Quy đồng mẫu thức các phân thức
1). \(\dfrac{4x^2-3x+5}{x^3-1}\); \(\dfrac{1-2x}{x^2+x+1}\); -2
2). \(\dfrac{10}{x+2}\); \(\dfrac{5}{2x-4}\); \(\dfrac{1}{6-3x}\)
quy đồng mẫu thức của các phân thức
\(\dfrac{1}{x+2};\dfrac{-3x}{x-2};\dfrac{3}{x^2-4x+4}\)
\(\dfrac{-1}{2x+2};\dfrac{3}{2-2x};\dfrac{5}{4x^2+4x+1}\)
cho mình hỏi là giữa khác phân số với nhua là phải có dấu như là công, trừ, nhân hay chia chứ?
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}\):\(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
giúp mik với mik cần gấp
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}:\) \(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
Câu 1 Quy đồng mẫu thức của các phân thức sau::(2 điểm)
a/ \(\dfrac{3}{4x^3y^2}\) và \(\dfrac{2}{3xy^3}\) b/ \(\dfrac{5}{x^2-6x+9}\) và \(\dfrac{3}{x^2-3x}\)
a) MTC: \(12x^3y^3\)
\(\dfrac{3}{4x^3y^2}=\dfrac{3\cdot3y}{4x^3y^2\cdot3y}=\dfrac{9y}{12x^3y^3}\)
\(\dfrac{2}{3xy^3}=\dfrac{2\cdot4x^2}{3xy^3\cdot4x^2}=\dfrac{8x^2}{12x^3y^3}\)
b) MTC: \(x\left(x-3\right)^2\)
\(\dfrac{5}{x^2-6x+9}=\dfrac{5}{\left(x-3\right)^2}=\dfrac{5x}{x\left(x-3\right)^2}\)
\(\dfrac{3}{x^2-3x}=\dfrac{3}{x\left(x-3\right)}=\dfrac{3\left(x-3\right)}{x\left(x-3\right)^2}=\dfrac{3x-9}{x\left(x-3\right)^2}\)
Quy đồng mẫu thức các phân thức sau (có thể áp dụng quy tắc đổi dấu với một phân thức để tìm mẫu thức chung thuận tiện hơn)
a) \(\dfrac{4x^2-3x+5}{x^3-1},\dfrac{1-2x}{x^2+x+1},-2\)
b) \(\dfrac{10}{x+2},\dfrac{5}{2x-4},\dfrac{1}{6-3x}\)
a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)
Nên MTC = (x – 1)(x2 + x + 1)
Nhân tử phụ:
(x3 – 1) : (x3 – 1) = 1
(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1
(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)
Qui đồng:
b) Tìm MTC: x + 2
2x – 4 = 2(x – 2)
6 – 3x = 3(2 – x)
MTC = 6(x – 2)(x + 2)
Nhân tử phụ:
6(x – 2)(x + 2) : (x + 2) = 6(x – 2)
6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)
6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)
Qui đồng:
click mh nhaquy đồng mẫu thức của các phân thức sau:
4x*2-3x+5/x*3-1 và 2x/x*2+x+1 ; 6/x-1
MTC : ( x - 1 )( x2 + x + 1 )
Ta có : \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)
Hnay mới học thì hnay trả lời nhá :P
\(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1}\)
Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(x^2+x+1=x^2+x+1\)
MTC : \(\left(x-1\right)\left(x^2+x+1\right)\)
\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1};\frac{6}{x-1}\)
Ta có : \(x^2+x+1=x^2+x+1\)
\(x-1=x-1\)
MTC : \(\left(x^2+x+1\right)\left(x-1\right)=x^3-1\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{2x^2-2x}{x^3-1}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{x^3-1}\)
Quy đồng mẫu các phân thức sau:
a)\(\dfrac{7x-1}{2x^2+6x};\dfrac{5-3x}{x^2-9}\)
\(a,\dfrac{7x-1}{2x^2+6x}=\dfrac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}=\dfrac{7x^2-22x+3}{2x\left(x-3\right)\left(x+3\right)}\\ \dfrac{5-3x}{x^2-9}=\dfrac{2x\left(5-3x\right)}{2x\left(x-3\right)\left(x+3\right)}=\dfrac{10x-6x^2}{2x\left(x-3\right)\left(x+3\right)}\)
Mn giúp e với ạ
Quy đồng mẫu thức các phân thức sau
\(\dfrac{4x^2-3x+8}{x^3-1};\dfrac{2x}{x^2+x+1};\dfrac{6}{1-x}\)
Lời giải:
$\frac{4x^2-3x+8}{x^3-1}$
$\frac{2x}{x^2+x+1}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}=\frac{2x^2-2x}{x^3-1}$
$\frac{6}{1-x}=\frac{-6(x^2+x+1)}{(x-1)(x^2+x+1)}=\frac{-6x^2-6x-6}{x^3-1}$
quy đồng mẫu thức của các phân tử
a, \(\dfrac{2}{5x^3y};\dfrac{5}{xy^2}\)
b, \(\dfrac{3x}{x-5};\dfrac{-2}{3\left(x-5\right)}\)
c, \(\dfrac{1}{\left(x+3\right)\left(x-3\right)};\dfrac{5x}{x^2-9}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{1}{2x^2+3x-5}\) và \(\dfrac{x+2}{4x-x^2-3}\)
\(\frac{x+2}{4x-x^2-3}=\frac{-\left(x+2\right)}{x^2-4x+3}=\frac{\left(-x-2\right)\left(2x+5\right)}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}=\frac{-2x^2-9x-10}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
\(\frac{1}{2x^2+3x-5}=\frac{1}{\left(x-1\right)\left(2x+5\right)}=\frac{x-3}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)