Tính nhanh:
S=1+22+23+.........................263
Bài 1. Tính S1 = 1 + 2 + 22 + 23 + … + 263
\(S_1=1+2+2^2+2^3+..+2^{63}\\ \Rightarrow2S_1=2+2^2+2^3+2^4+...+2^{64}\\ \Rightarrow S_1-2S_1=1-2^{64}\\ \Rightarrow-S_1=1-2^{64}\\ \Rightarrow S_1=2^{64}-1.\)
- Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)
= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1
H2.right
`#3107.101107`
`S_1 = 1 + 2 + 2^2 + 2^3 + ... + 2^63`
`2S_1 = 2 + 2^2 + 2^3 + .... + 2^64`
`2S_1 - S_1 = (2 + 2^2 + 2^3 + ... + 2^64) - (1 + 2 + 2^2 + 2^3 + ... + 2^63)`
`S_1 = 2 + 2^2 + 2^3 + ... + 2^64 - 1 - 2 - 2^2 - 2^3 - ... - 2^63`
`S_1 = 2^64 - 1`
Vậy, `S_1 = 2^64 - 1.`
Tính tổng
A = 1 + 2 + 22 + 23 +.....+ 262 + 263
A=1+2+22+23+...+262+263
2A=2+22+23+24+...+263+264
2A-A=2+22+23+24+...+263+264-1+2+22+23+...+262+263
A=264-1
\(A=1+2+2^2+2^3+..+2^{62}+2^{63}\)
\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)
\(2A-A=2^{64}-1\)
\(A=2^{64}-1\)
A=1+2+22+23+...+262+263
2A=2(1+2+22+23+...+262+263)
2A=2+23+24+25...+263+264
2A-A=(2+23+24+25...+263+264)-(1+2+22+23+...+262+263)
A=264-1
Nha bạn. Chúc bn ht
Tính tổng
A = 1 + 2 + 22 + 23 + ... + 262 + 263
2A = 2 + 22 + 23 + 24 + ... + 263 + 264
A = 264 - 1
1+2+22+23+...+263=264-1
`1+2+2^2+2^3+....+2^63`
`=2+2+2^2+2^3+....+2^63-1`
`=2.2+2^2+2^3+....+2^63-1`
`=2^2+2^2+2^3+....+2^63-1`
`=2.2^2+2^3+....+2^63-1`
`=2^3+2^3+...2^63-1`
`=2.2^3+....+2^63-1`
`=2^4+....+2^63-1`
`=2^{63}.2-1=2^64-1`
Đặt \(A=1+2+2^2+2^3+...+2^{63}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{64}\)
\(\Rightarrow A=2A-A=\left(2+2^2+2^3+2^4+...+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{63}\right)=2^{64}-1\left(đpcm\right)\)
tính nhanh:S= 1/3+1/15+1/35+....+1/2017*2019
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2017.2019}\)
\(\Leftrightarrow S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(\Rightarrow2S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\right)\)
\(\Leftrightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(\Leftrightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{2}{2019}\)
\(\Leftrightarrow2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(\Rightarrow S=\frac{2018}{2019}:2=\frac{1009}{2019}\)
Vậy \(S=\frac{1009}{2019}.\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2017.2019}\)
\(\Rightarrow S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2017.2019}\)
\(\Rightarrow S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(\Rightarrow S=\frac{2018}{2019}\)
Ta có : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{2017.2019}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2017.2019}\)
=> \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2017.2019}\)
=> \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{2017}-\frac{1}{2019}\)
=> \(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
=> \(S=\frac{2018}{2019}.\frac{1}{2}=\frac{1009}{2019}\)
tính nhanh:S=1+(-2)+3+(-4)+5+...+99+(-100)
S=1+(-2)+3+(-4)+...+99+(-100)=(-2+1)+(-4+3)+...+(-100+99)=(-1)+(-1)+...+(-1)=(-1)*50=-50
Tính nhanh:S=1+(-2)+(-3)+4+5+...+97+(-98)+(-99)+100=?
Tính nhanh:S=1.3+3.5+5.7+...+41.43
Tính nhanh:S=3,17+4,67+6,17+.....+16,67+18,17
Tính nhanh:S=2/1.2.3+2/2.3.4+...+2/99.100.101