Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Thao
Xem chi tiết
Pham Thao
9 tháng 8 2017 lúc 22:24

help me

Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

vũ linh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 19:12

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 20:39

a) ĐKXĐ: \(x\ge0\)

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 20:42

b) Ta có: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Ta có: \(P=\dfrac{8}{9}\)

nên \(36\sqrt{x}=27\left(x-\sqrt{x}+1\right)\)

\(\Leftrightarrow27x-27\sqrt{x}+27-36\sqrt{x}=0\)

\(\Leftrightarrow27x-63\sqrt{x}+27=0\)

 

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Thao Van
Xem chi tiết
Thao Van
28 tháng 8 2016 lúc 22:19

giúp với khocroi

Pham Thao
9 tháng 8 2017 lúc 22:16

1.A^2= 1-x+8+x+2\(\sqrt{\left(1-x\right).\left(8+x\right)}\)= 9+2\(\sqrt{\left(x-1\right).\left(8+x\right)}\)

ta thấy \(\sqrt{\left(x-1\right).\left(8+x\right)}\)>= 0 =>A^2>= 9

KL: A min= 9 khi x=1 hoặc x=-8

Vũ Thùy Linh
Xem chi tiết
vũ tiền châu
18 tháng 9 2017 lúc 20:40

câu 1 

ta có .....

lười viết Min - cốp xki nha

pham thi thu trang
18 tháng 9 2017 lúc 21:25

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

pham thi thu trang
18 tháng 9 2017 lúc 21:52

ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)

nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )

Ly Ly
Xem chi tiết
Hồng Nhan
30 tháng 6 2021 lúc 15:53

a) ⇔ |2x+3| = 8
⇒ \(\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}2x=5\\2x=-11\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

Vậy...

Ricky Kiddo
30 tháng 6 2021 lúc 15:56

undefined

Lê Trang
30 tháng 6 2021 lúc 15:56

b) ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow3\sqrt{x}-7\sqrt{x}+6\sqrt{x}=8\)

\(\Leftrightarrow2\sqrt{x}=8\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\) (Vì \(x\ge0\) )

Vậy x = 16

c) ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)(TM)

Vậy x = 17

Renian Karin
Xem chi tiết
Cao Phan Tuấn Anh
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Đặng Tuyết Đoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:31

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7