Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hạ
Xem chi tiết
nguyễn công huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 14:42

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2

super xity
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 7 2016 lúc 12:57

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

Phan Văn Hiếu
19 tháng 7 2016 lúc 11:24

ve hin hra roi nghi cach cm 

nguyễn anh minh
19 tháng 7 2016 lúc 11:40

mày bảo cho hình mà =))))

Min min
Xem chi tiết
zZz Cool Kid_new zZz
27 tháng 9 2019 lúc 17:13

A B C D O

Theo bất đẳng thức tam giác ta có:

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OD>DC\)

\(OD+OA>AD\)

Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)

\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )

Theo bất đẳng thức tam giác ta có:

\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)

Cộng vế theo vế ta có:

\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)

\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )

Từ ( 1 ) ; ( 2 ) suy ra đpcm.

nguyen anh linh
Xem chi tiết
Yang LLyn LLyn
14 tháng 10 2021 lúc 22:45

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.

Khách vãng lai đã xóa
Ko có tên
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Phương HÀ
29 tháng 6 2016 lúc 9:46

ta có : AB//CD và AD//BC

=> ABCD là hình bình hành

=>theo tính chất hình bình hành thì AB=CD VÀ BD = AD

B) nếu O là giao hai đường chéo thì mới làm dduocj 

theo tính chất hình bình hành thì hai đường chéo giao nhau tại trung điểm mỗi đường 

=> OC=OA và OB=OD

Hoàng Quang Minh
Xem chi tiết