Cho tứ giác ABCD có AB//CD, AD//BC, AB=AD và góc A=90 độ. Chứng minh rằng: OA=OB, OC=OD
Cho tứ giác ABCD có AB//CD, AD//BC, AB=AD và góc A=90 độ. Gọi O là giao điểm của AD và BC. Chứng minh rằng: OA=OB, OC=OD
Cho tứ giác lồi ABCD có AC vuông góc BD tại O Chứng minh rằng :
Câu 1 \(AB^2+BC^2+CD^2+DA^2=2\left(OA^2+OB^2+OC^2+OD^2\right)\)
Câu 2 \(AB^2+CD^2=AD^2+BC^2\)
1:
ΔOAB vuông tại O
=>AB^2=AO^2+BO^2
ΔBOC vuông tại O
=>BC^2=BO^2+CO^2
ΔAOD vuông tại O
=>AD^2=AO^2+DO^2
ΔDOC vuông tại O
=>DC^2=OC^2+OD^2
AB^2+BC^2+CD^2+DA^2
=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2
=2(OA^2+OB^2+OC^2+OD^2)
2:
AB^2+CD^2
=OA^2+OB^2+OC^2+OD^2
=OA^2+OD^2+OB^2+OC^2
=AD^2+BC^2
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
Gọi O là giao điểm hai đường chéo AC và BD
Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
b,khi O là một điểm bất kì thuộc miền trong tứ giác ABCD thì kết luận trên có đúng không
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>DC\)
\(OD+OA>AD\)
Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)
\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )
Theo bất đẳng thức tam giác ta có:
\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)
Cộng vế theo vế ta có:
\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)
\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra đpcm.
1, Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác góc C
2, Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA=OC, OB=OD. Tứ giác ABCD là hình gì? VÌ sao?
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân) (2)
ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1
⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ACBD là hình thang cân.
cho tứ giác ABCD.Gọi O là giao điểm của hai đường chéo AC và BD.
a)Chứng minh:AB+BC+CD+AD/2<OA+OB+OC+OD<AB+BC+CD+AD
b)Khi O là điểm bất kì trong tứ giác ABCD,kết luận trên có đúng không?
cho hình thang ABCD có góc A = góc D = 90 độ .hai đường AC và BD vuông góc với nhau tại O
a, chứng minh AD là trung bình nhân của hai đáy
b, cho AB= 18 CD = 32 tính OC , OB , OC . OD
c, chứng minh các độ dài AC. BD và AB+CD là độ dài ba cạnh của tam giác vuông
Cho hình vẽ biết AB // CD; AD // BC.
a) Chứng minh AB = CD; AD = BC | b) Chứng minh OA = OC ; OB = OD
ta có : AB//CD và AD//BC
=> ABCD là hình bình hành
=>theo tính chất hình bình hành thì AB=CD VÀ BD = AD
B) nếu O là giao hai đường chéo thì mới làm dduocj
theo tính chất hình bình hành thì hai đường chéo giao nhau tại trung điểm mỗi đường
=> OC=OA và OB=OD
Tứ giác ABCD có hai góc vuông tại đỉnh A và C ,(BC < AD) AB cắt CD tại E . Hai đường chéo AC và BD cắt nhau tại O , góc BAO = góc BDC a, CM : Δ EAD đồng dạng với Δ ECB b, CM : OD . OB = OA . OC