Tìm a, biết\(\left(x^2-ax-5a^2-\dfrac{1}{2}\right):\left(x+2a\right)\) (luôn chia hết)
Tìm a, biết\(\left(x^2-ax-5a^2-\dfrac{1}{2}\right):\left(x+2a\right)\) (luôn chia hết)
Tìm a để:
a,\(\left(2x^2+ax-4\right):\left(x+4\right)\)
b,\(\left(x^2-ax-5a^2-\dfrac{1}{4}\right):\left(x+2a\right)\)
Tìm a để:
a,\(\left(2x^2+ax-4\right):\left(x+4\right)\)
b,\(\left(x^2-ax-5a^2-\dfrac{1}{4}\right):\left(x+2a\right)\)
đề thiếu nha
a) ta có : \(\dfrac{2x^2+ax-4}{x+4}\in Z\Leftrightarrow2x^2+ax-4=\left(x+4\right)\left(2x+b\right)\)
\(\Leftrightarrow x^2+ax-4=2x^2+\left(b+8\right)x+4b\) \(\Rightarrow4b=-4\Leftrightarrow b=-1\)
\(\Rightarrow a=b+8=-1+8=7\) vậy \(a=7\)
câu kia lm tương tự nha bn
Tìm a để:
a,\(\left(2x^2+ax-4\right):\left(x+4\right)\)
b,\(\left(x^2-ax-5a^2-\dfrac{1}{4}\right):\left(x+2a\right)\)
a)\(\dfrac{2}{x^2-y^2}\sqrt{\dfrac{3\left(x+y\right)^2}{2}}\left(x,y\ge0;x\ne y\right)\)
b)\(\dfrac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\left(a>0,5\right)\)
Rút gọn:
\(A=\left[\left(\dfrac{3}{1+x}-\dfrac{x}{x^2+x+1}\right):\dfrac{2x^2+3x}{x+1}+\dfrac{3}{x+1}\right]\cdot\dfrac{x^2+x}{1+3x}\)
\(B=\left[\dfrac{a}{2a-6}-\dfrac{a^2}{a^2-9}+\dfrac{a}{2a-9}\cdot\left(\dfrac{3}{a}+\dfrac{1}{3-a}\right)\right]:\dfrac{a^2-5a-6}{18-2a^2}\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) \(\left(a\ne0\right)\). Tìm a, b, c biết \(f\left(x\right)-2020\)chia hết cho x - 1, \(f\left(x\right)+2021\) chia hết cho x + 1 và \(f\left(x\right)\) nhận giá trị bằng 2 khi x = 0
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(0\right)=2\Rightarrow c=2\)
\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)
\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)
\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)
\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)
\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)
b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)
\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)