Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Wiao Đz
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:01

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)

Do đó: x=3; y=2; z=1

 

Trần Phương Linh
Xem chi tiết
Aki Tsuki
31 tháng 7 2018 lúc 22:52

1/ Đặt: \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3t}{4}=k\)

=> \(x=2k;y=\dfrac{3k}{2};t=\dfrac{4k}{3}\)

=> \(xyt=2k\cdot\dfrac{3k}{2}\cdot\dfrac{4k}{3}=4k^3=-108\)

=> \(k^3=-27\Rightarrow k=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-3\right)=-6\\y=\dfrac{3k}{2}=\dfrac{3\cdot\left(-3\right)}{2}=-\dfrac{9}{2}\\t=\dfrac{4k}{3}=\dfrac{4\cdot\left(-3\right)}{3}=-4\end{matrix}\right.\)

Vậy ...........

2/ Sửa đề: 3x + 5y+7t = 123

Ta có: \(\dfrac{x}{2}=\dfrac{2y}{5}=\dfrac{4t}{7}\)

\(\Rightarrow\dfrac{3x}{6}=\dfrac{5y}{12,5}=\dfrac{7t}{12,25}\)

A/dung t/c của dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{6}=\dfrac{5y}{12,5}=\dfrac{7t}{12,25}=\dfrac{3x+5y+7t}{6+12,5+12,25}=\dfrac{123}{30,75}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4\cdot6}{3}=8\\y=\dfrac{4\cdot12,5}{5}=10\\t=\dfrac{4\cdot12,25}{7}=7\end{matrix}\right.\)

Vậy............

Nguyễn Trần Lam Trúc
Xem chi tiết
Nguyễn Huy Tú
16 tháng 7 2021 lúc 13:52

undefined

Phạm Thùy Linh ( team ❤️...
Xem chi tiết
Phạm Nguyễn Gia Phú
4 tháng 10 lúc 20:19

1,7y

vũ đức
Xem chi tiết
Doraemon
3 tháng 11 2018 lúc 9:11

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

bảo phạm
31 tháng 10 2018 lúc 17:56

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

Doraemon
3 tháng 11 2018 lúc 9:30

a) \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)\(2x-3y+z=6\)

Theo đề bài, ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}\times\dfrac{1}{3}=\dfrac{y}{4}\times\dfrac{1}{3}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\)(1)

\(\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{3}\times\dfrac{1}{4}=\dfrac{z}{5}\times\dfrac{1}{4}\Rightarrow\dfrac{y}{12}=\dfrac{z}{20}\)(2)

Từ (1) và (2), ta có: \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Leftrightarrow\dfrac{x}{9}\Rightarrow\dfrac{2x}{18};\dfrac{y}{12}\Rightarrow\dfrac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x}{18}=3\Rightarrow x=\dfrac{18\times3}{2}=27\\\dfrac{3y}{36}=3\Rightarrow y=\dfrac{36\times3}{3}=36\\\dfrac{z}{20}=3\Rightarrow z=20\times3=60\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

Wiao Đz
Xem chi tiết
Tô Hà Thu
31 tháng 8 2021 lúc 19:32

\(3x-2y=28\)

 

Kirito-Kun
31 tháng 8 2021 lúc 19:39

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-4}\)

<=> \(\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{-3z}{12}\)

<=> 6x = 4y

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=28\\6x=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=28\\6x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=56\\6x-4y=0\end{matrix}\right.\)

<=> 56 = 0 (Vô lí)

<=> x và y vô nghiệm

<=> x, y, z vô nghiệm

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 19:40

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-4}\)

nên \(\dfrac{3x}{6}=\dfrac{2y}{6}=\dfrac{z}{-4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x}{6}=\dfrac{2y}{6}=\dfrac{z}{-4}=\dfrac{3x-2y}{6-6}=\dfrac{28}{0}\)

=> Đề sai rồi bạn

Nguyễn Minh An
Xem chi tiết
Mỹ Ngân
12 tháng 12 2021 lúc 19:58

7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36

Nên theo tính chất của dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6

 \(\Rightarrow\)x=6.5=30

     y=6.6=36

     z=6.7=42

vậy x=30,y=36,z=42

 

 

Vân Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:41

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Do đó: x=-70; y=-135; z=-84

phạm lê quỳnh anh
12 tháng 10 2021 lúc 21:48

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Lấp La Lấp Lánh
13 tháng 10 2021 lúc 0:21

a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{4}\end{matrix}\right.\)

 \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x+z-y}{10+12-15}=-\dfrac{49}{7}=-7\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{-2}\\\dfrac{x}{6}=\dfrac{z}{7}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{7}=\dfrac{3x}{18}=\dfrac{2y}{-8}=\dfrac{3x-z+2y}{18-7-8}=\dfrac{3}{3}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.6=6\\y=1.\left(-4\right)=-4\\z=1.7=7\end{matrix}\right.\)

 

kenin you
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:29

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:30

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:32

Bài 2: 

b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)

nên \(\dfrac{y}{12}=\dfrac{z}{28}\)

mà \(\dfrac{x}{11}=\dfrac{y}{12}\)

nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)

hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)

mà 2x-y+z=152

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)

Vậy: (x,y,z)=(44;48;112)