Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ariels spring fashion
Xem chi tiết
Nguyễn Linh Chi
15 tháng 10 2020 lúc 12:34

a) Xét \(\Delta\)OAM và \(\Delta\)OAN có: AM = AN ; OA chung; OM = ON

=> \(\Delta\)OAM = \(\Delta\)OAN => ^AMO = ^ANO = 90 độ 

=> AN vuông AO 

=> AN là tiếp tuyến của (O)

b. AM = R 

=> AN = AM = R = OM = ON 

=> AMON là hình thoi 

mà ^OMA = 90 độ 

=> AMON là hình vuông 

=> \(MN=\sqrt{2}R\)(Pitago)

Khách vãng lai đã xóa
Ariels spring fashion
15 tháng 10 2020 lúc 12:45

vẽ hình giúp mình với ạ

Khách vãng lai đã xóa
Quyên Teo
Xem chi tiết
Nguyễn Huy Tú
8 tháng 3 2022 lúc 19:25

a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm 

=> ^AMO = ^ANO = 900

mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R 

Vậy OA là đường trung trực đoạn MN => OA vuông MN 

Xét tứ giác AMON có 

^AMO + ^ANO = 1800

mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM có 

^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g)

\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)

c, Xét tam giác OMA vuông tại M, đường cao MH 

Ta có \(AM^2=AH.AO\)( hệ thức lượng ) 

=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)

Xét tam giác ABH và tam giác AOC có 

^A _ chung 

\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( góc ngoài đỉnh B )

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

d, Ta có BHOC nt 1 đường tròn (cmc) 

=> ^OHC = ^OBC (góc nt chắc cung CO) 

=> ^AHB = ^ACO (góc ngoài đỉnh H) 

mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O

=> ^OHC = ^AHB 

mà ^CHN = 900 - ^OHC 

^NHB = 900 - ^AHB 

=> ^CHN = ^NHB 

=> HN là phân giác của ^BHC 

Do Ngoc Anh
Xem chi tiết
Nguyễn Huy Tú
26 tháng 3 2022 lúc 13:26

a, Ta có AM ; AN lần lượt là tiếp tuyến (O) 

=> ^AMO = ^ANO = 900

Xét tứ giác AMON có ^AMO + ^ANO = 1800 

mà 2 góc này đối 

Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM ta có 

^A _ chung ; ^AMB = ^ACM ( cùng chắn BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g) 

c, Ta có AM = AN ( tc tiếp tuyến cắt nhau ) 

ON = OM = R => OA là đường trung trực đoạn MN 

Xét tam giác AMO vuông tại M, đường cao MH 

=> AM^2 = AH.AO 

=> AB . AC = AH . AO => AB/AO = AH/AC 

Xét tam giác ABH và tam giác AOC có

^A _ chung ; AB/AO = AH/AC (cmt) 

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B ) 

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

 

Phùng văn chuẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 21:29

a: góc AMO+góc ANO=90+90=180 độ

=>AMON nội tiếp

b: Xet ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM^2=AB*AC=AM*AN

c: AB*AC=AM^2=AO^2-R^2

Hồng Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 11:27

a: góc OMA+góc ONA=180 độ

=>OMAN nội tiếp

b: OMAN nội tiếp

=>góc AOM=góc ANM

mà góc AOM=góc AOn

nên góc AON=góc ANM

 

Anh Min
Xem chi tiết
neverexist_
26 tháng 12 2021 lúc 10:23

undefined

ironman123
Xem chi tiết
nguyen thi hong tham
Xem chi tiết
Tâmm🌷
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 23:55

a: Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và OA là phân giác của góc MON

Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

b: Ta có: \(\widehat{POA}+\widehat{MOA}=\widehat{MOP}=90^0\)

\(\widehat{PAO}+\widehat{NOA}=90^0\)(ΔNOA vuông tại N)

mà \(\widehat{MOA}=\widehat{NOA}\)(OA là phân giác của góc MON)

nên \(\widehat{POA}=\widehat{PAO}\)

=>ΔPAO cân tại P

c: Ta có: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại H

Xét ΔOMA vuông tại M có MH là đường cao

nên \(OH\cdot OA=OM^2=R^2\)