Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kể tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm)
a) Chứng minh rằng tứ giác AMON nối tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) ( Tia AO nằm giữa AM và AC ). Chứng minh rằng: AM2= AB. AC
c) Gọi H là giao điểm của AO và MN. Chứng minh tứ giác BHOC nội tiếp.
d) Chứng minh rằng HN là tia phân giác của góc BHC.
a, Ta có AM ; AN lần lượt là tiếp tuyến (O)
=> ^AMO = ^ANO = 900
Xét tứ giác AMON có ^AMO + ^ANO = 1800
mà 2 góc này đối
Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM ta có
^A _ chung ; ^AMB = ^ACM ( cùng chắn BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
c, Ta có AM = AN ( tc tiếp tuyến cắt nhau )
ON = OM = R => OA là đường trung trực đoạn MN
Xét tam giác AMO vuông tại M, đường cao MH
=> AM^2 = AH.AO
=> AB . AC = AH . AO => AB/AO = AH/AC
Xét tam giác ABH và tam giác AOC có
^A _ chung ; AB/AO = AH/AC (cmt)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn