Phân tích đa thức thành nhân tử:
a) ( ab - 1 )^2 + ( a + b )^2
b) x^4 - 2x^3 + 2x - 1
Phân tích đa thức thành nhân tử : x^4 + 2x^3 + x^2 + x + 1
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
Phân tích đa thức thành nhân tử : x^4 - 2x^3 + 2x - 1
\(x^4-2x^3+2x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]=\left(x-1\right)^2\left(x^2-1\right)=\left(x-1\right)^3\left(x+1\right)\)
\(x^4-2x^3+2x-1\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)
Phân tích đa thức thành nhân tử : 5x^2 - 4(x^2 - 2x + 1) - 5
\(5x^2-4\left(x^2-2x+1\right)-5=\left(5x^2-5\right)-4\left(x-1\right)^2=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
\(= \)\(5x^2-4x^2+8x-4-5\)
\(=\)\(x^2+8x-9\)
\(=x^2+9x-x-9\)
\(=(x-1)(x+9)\)
\(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
Phân tích đa thức thành nhân tử
a) x^6 - x^4 + 2x^3 + 2x^2
b) x^m+4 + x^m+1 - x - 1
Giúp mình với
a) x^6 - x^4 + 2x^3 + 2x^2
=x2(x4-x2+2x+2)
=x2[x4-2x3+2x2+2x3-4x2+4x+x2-2x+2]
=x2[x2(x2-2x+2)+2x(x2-2x+2)+(x2-2x+2)
=x2[(x2+2x+12)(x2-2x+2)]
=x2(x+1)2(x2-2x+2)
b) x^(m+4) + x^(m+1) - x - 1
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
=>đa thức đc phân tích là
=(x+1)(xm+3-xm+2+xm+1-1)
Phân tích đa thức thành nhân tử:
A, 3x^2+7x-76
B, 2x^2+3881x-17505
C, 1/2x^2-19/6x+1
Đ, x^4+324
Phân tích đa thức thành nhân tử
(x^2-2x+3)(x^2-2x+5)-8
x^2-2x-5+2 nhân căn 5
Cho a+b+c=1.Tìm giá trị của biểu thức
B=a-b trên b+1+2c + 3b+4c trên c-a+2 -c trên 3-2a-b
Phân tích đa thức thành nhân tử : (ab - 1)^2 + (a + b)^2
\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2+b^2+a^2b^2+1=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)
\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2b^2+a^2+b^2+1=\left(a^2b^2+a^2\right)+\left(b^2+1\right)=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)
\(\left(ab-1\right)^2+\left(a+b\right)^2\)
\(=a^2b^2+1+a^2+b^2\)
\(=\left(a^2+1\right)\left(b^2+1\right)\)
1. Phân tích đa thức thành nhân tử
a, 1/4x^2-5xy+25y^2
b, (7x-4)^2-(2x+1)^2
c, (x-2)^2-4y
d, 125-x^6
a) \(\frac{1}{4}x^2-5xy+25y^2=\left(\frac{1}{2}x\right)^2-5xy+\left(5y\right)^2\)
\(=\left(\frac{1}{2}x-5y\right)^2\)
b) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4+2x+1\right)\times\left(7x-4-2x-1\right)=\left(9x-3\right)\times\left(5x-5\right)\)
\(=3\times5\times\left(3x-1\right)\times\left(x-1\right)=15\times\left(3x-1\right)\times\left(x-1\right)\)
c)\(\left(x-2\right)^2-4y^2=\left(x-2-2y\right)\left(x-2+2y\right)\)
d) \(125-x^6=5^3-\left(x^2\right)^3=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)
Phân tích đa thức thành nhân tử
x4+x3+2x2+x+1
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
x^4+x^3+2x^2+x+1
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
=(x^2+1)(x^2+x+1)