7) Cho hàm số y=\(\left(3-\sqrt{2}\right)x+1\). Tính giá trị của x khi y nhận các giá trị sau: 0; 1; 8; \(2+\sqrt{2}\) ; \(2-\sqrt{2}\)
Cho hàm số \(y = f\left( x \right) = 3x\)
a) Tính \(f\left( 1 \right);f\left( { - 2} \right);f\left( {\dfrac{1}{3}} \right)\).
b) Lập bảng các giá trị tương ứng của \(y\) khi \(x\) lần lượt nhận các giá trị:
\( - 3; - 2; - 1;0;1;2;3\).
a) \(f\left( 1 \right) = 3.1 = 3;f\left( { - 2} \right) = 3.\left( { - 2} \right) = - 6;f\left( {\dfrac{1}{3}} \right) = 3.\dfrac{1}{3} = 1\).
b) Ta có: \(f\left( { - 3} \right) = 3.\left( { - 3} \right) = - 9;f\left( { - 1} \right) = 3.\left( { - 1} \right) = - 3\)
\(f\left( 0 \right) = 3.0 = 0;f\left( 2 \right) = 3.2 = 6;f\left( 3 \right) = 3.3 = 9\);
Ta lập được bảng sau
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(y\) | –9 | -6 | –3 | 0 | 3 | 6 | 9 |
Cho hàm số y = (3 - 2 )x + 1. Tính các giá trị tương ứng của y khi x nhận các giá trị sau:
0; 1; 2 ; 3 + 2 ; 3 - 2
Các giá trị của y được thể hiện trong bảng sau:
x | 0 | 1 | 2 | 3 + 2 | 3 - 2 |
y = (3 - 2 )x + 1 | 1 | 4 - 2 | 3 2 - 1 | 8 | 12 - 6 2 |
Cho hàm số y = (3 - 2 )x + 1. Tính các giá trị tương ứng của x khi y nhận các giá trị sau:
0; 1; 8; 2 + 2 ; 2 - 2
Cho hàm số y=\(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)
a) Xét sự đồng biến và nghịch biến của các hàm số trên;
b) Tính giá trị của y khi x=\(3+2\sqrt{2}\)
a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến
b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:
\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)
\(=9-8+\sqrt{2}-1\)
\(=\sqrt{2}\)
a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.
b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`
`=> y=\sqrt2` khi `x=3+2\sqrt2`
cho hàm số \(y=\left(\sqrt{3}-1\right)x+5\) khi \(x=\sqrt{3}+1\) thì y nhận giá trị là
A. 5
B. 7
C .9
D.\(9+2\sqrt{3}\)
Cho hàm số y=(5-3\(\sqrt{ }\)2)x+\(\sqrt{ }\)2 -1
a) Hàm số đã cho đồng biến hay nghịch biến trên tập?vì sao
b) Tính giá trị của y khi x=5+3\(\sqrt{ }\)2
c) Tìm các giá trị của x khi y=0
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)
cho hàm số bậc nhất y=F(x)=\(\left(\sqrt{3}-1\right)\) X+1
a) hàm số trên là đồng biến hay nghịch biến trên R
b)tính các giá trị F(0);F\(\left(\sqrt{3}+1\right)\)
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
Cho hàm số y=h(x)= -\(\sqrt{3}.\left(x-7\right)\)
Tìm các giá trị cuẢ x sao cho :
a) y nhận giá trị dương
b) y nhận giá trị âm
giải giúp mik nha 4 tick nha
a: Để y>0 thì x-7<0
hay x<7
b: Để y<0 thì x-7>0
hay x>7
Cho hàm số \(y=\left(5-2\sqrt{7}\right)x+1\)
a, Hàm số đồng biến hay nghịch biến trên R?
b, Tìm các giá trị của y tương ứng với các giá trị của x: 0; 1; \(\sqrt{7}\) ; \(5+2\sqrt{7}\)