phân tích đa thức thành nhân tử
a) xy+xz-5x-5y
b) x+y-x2-xy
c) x2-xy-7x+7y
d) ax2+cx2-ay+ay2-cy+cy2
GIÚP MK VS
Bài 1 : Phân tích đa thức thành nhân tử
a) x2-6x-y2+9
b) 25-4x2-4xy -y2
c) x2+2xy+y2- xz-yz
d) x2-4xy+4y2-z2+4tz-4t2
Bài 2 : Phân tích đa thức thành nhân tử
a) ax2+cx2-ay+ay2-cy+cy2
b) ax^2+ay^2-bx^2-by^2+b-a
c) ac^2-ad-bc^2+cd+bd-c^3
Bài 3 : Tìm x
a) x(x-5)-4x+20=0
b) x(x+6)-7x-42=0
c) x^3-5x^2+x-5=0
d) x^4-2x^3+10x2-20x=0
Phân tích đa thức thành nhân tử
ax2+cx2-ay+ay2-cy+cy2
ax2+cx2-ay+ay2-cy+cy2
= x2(a+c)-y(a+c)+y2(a+c)
= (a+c)(x2-y+y2)
ax2+cx2-ay+ay2-cy+cy2
x2(a+c)-y(a+c)
a+c x2-y+y2
\(ax^2+cx^2-ay+ay^2-cy+cy^2\)
\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)
\(=\left(a+c\right)\left(x^2-y+y^2\right)\)
Phân tích đa thức thành nhân tử)
a) 5x - 5y + ax - ay
b) a3 - a2x - ay + xy
c) xy ( x+ y ) + yz ( y+ z ) + xz ( x + z ) + 2xyz
a)
5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)
b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)
c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz
= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)
=(y+z)(x^2+x+yz)
Bài 3: Phân tích các đa thức sau thành nhân tử bằng phương pháp nhóm các hạng tử
a) x4-x3-x+1 b)x2y+xy2-x-y
c)ax2+a2y-7x-7y d)ax2+ay-bx2-by
e)x4+x3+x+1 g)x2-2xy+y2-xz+yz
h)x2-y2-x+y i)x2-4+2x+1
giúp mình với,mình cần gấp mn ơi
a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)^2\left(x^2+x+1\right)\)
b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
c) Đổi đề: \(a^2x+a^2y-7x-7y\)
\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)
d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)
a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)
e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)
i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)
Phân tích các đa thức sau thành nhân tử
a) x 2 + x y − 5 x − 5 y
b) 25 − x 2 − y 2 − 2 x y
c) x 4 + x 3 + 2 x 2 + x + 1
bài 1 phân tích các đa thức thành nhân tử
a) x2 - z2 + y2 - 2xy b) a3 - ay - a2x + xy
c) x2 - 2xy + y2 - xz + yz d) x2 - 2xy + tx - 2ty
bài 2 giải các phương trình sau
( x - 2 )2 - ( x - 3 ) ( x+ 3 ) = 6
bài 3 chứng minh rằng
a) x2 + 2x + 2 > 0 với xϵZ
b) -x2 + 4x - 5 < 0 với x ϵ Z
\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)
1. Phân tích các đa thức sau thành nhân tử:
a) 5x2 – 10xy
b) 3x(x – y) – 6(x – y)
c) 2x(x – y) – 4y(y – x)
d) 9x2 – 9y2
e) x2 – xy – x + y
f) xy – xz – y + z
Lời giải:
a. $5x^2-10xy=5x(x-2y)$
b. $3x(x-y)-6(x-y)=(x-y)(3x-6)=3(x-y)(x-2)$
c. $2x(x-y)-4y(y-x)=2x(x-y)+4y(x-y)=(x-y)(2x+4y)=2(x-y)(x+2y)$
d. $9x^2-9y^2=9(x^2-y^2)=9(x-y)(x+y)$
e. $x^2-xy-x+y=(x^2-xy)-(x-y)=x(x-y)-(x-y)=(x-y)(x-1)$
f. $xy-xz-y+z=(xy-y)-(xz-z)=y(x-1)-z(x-1)=(x-1)(y-z)$
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
nhờ giải giupws em với a
1. Phân tích các đa thức sau thành nhân tử:
a) 5x2 – 10xy
b) 3x(x – y) – 6(x – y)
c) 2x(x – y) – 4y(y – x)
d) 9x2 – 9y2
e) x2 – xy – x + y
f) xy – xz – y + z
2. Phân tích các đa thức sau thành nhân tử:
a)a2 – 4b2 b) x2 – y2 + 6y - 9
c) (2a + b)2 – a2 d) 16(x – 1)2 – 25(x + y)2
e)x2 + 10x + 25 f) 25x2 – 20xy + 4y2
g)9x4 + 24x2 + 16 h) x3 – 125
i)x6 – 1 k) x3 + 15x2 + 75x + 125
3. Tìm x biết :
a) 3x2 + 8x = 0 b) 9x2 – 25 = 0 c) x3 – 16x = 0 d) x3 + x = 0.
4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6
Bài `1`
\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)
Bài `3`
\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)
\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)