Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Lạc
Xem chi tiết
Phạm Ngân Hà
5 tháng 6 2018 lúc 19:57

Xét biểu thức \(x+y+xy+1=\left(x+1\right)\left(y+1\right)\)

Từ giả thiết suy ra \(x+1=\dfrac{\left(b+c\right)^2-a^2}{2bc};y+1=\dfrac{4bc}{\left(b+c\right)^2-a^2}\)

Do đó \(\left(x+1\right)\left(y+1\right)=2\Rightarrow xy+x+y+1=2\Rightarrow xy+x+y=1\)

Phùng Khánh Linh
5 tháng 6 2018 lúc 20:04

A = x + y + xy

A = x( y + 1) + y

A = \(\dfrac{b^2+c^2-a^2}{2bc}\left(\dfrac{a^2-b^2+2bc-c^2}{\left(b+c\right)^2-a^2}+1\right)+\dfrac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

A = \(\dfrac{b^2+c^2-a^2}{2bc}.\dfrac{4bc}{\left(b+c\right)^2-a^2}+\dfrac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

A= \(\dfrac{2\left(b^2+c^2-a^2\right)+a^2-b^2+2bc-c^2}{\left(b+c\right)^2-a^2}\)

A = \(\dfrac{b^2+2bc+c^2-a^2}{\left(b+c\right)^2-a^2}=\dfrac{\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}=1\)

Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:05

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:07

2.

\(VT=a\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+b\left(\dfrac{1}{a^2}+\dfrac{1}{c^2}\right)+c\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(VT\ge\dfrac{2a}{bc}+\dfrac{2b}{ac}+\dfrac{2c}{ab}=2\dfrac{a^2+b^2+c^2}{abc}\)

\(VP=\dfrac{2\left(ab+bc+ca\right)}{abc}\)

\(\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{a^2+b^2+c^2}{abc}\)

\(\Rightarrow ab+bc+ca\ge a^2+b^2+c^2\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)

\(\Rightarrow a=b=c\)

Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:13

3.

\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)

\(\Rightarrow\left(\dfrac{x^2-yz}{a}\right)^2=\left(\dfrac{y^2-xz}{b}\right)\left(\dfrac{z^2-xy}{c}\right)=\dfrac{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}{a^2-bc}\)

\(=\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}\)

Tương tự:

\(\left(\dfrac{y^2-xz}{b}\right)^2=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}\)

\(\left(\dfrac{z^2-xy}{c}\right)^2=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)

\(\Rightarrow\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)

\(\Rightarrow\dfrac{x}{a^2-bc}=\dfrac{y}{b^2-ac}=\dfrac{z}{c^2-ab}\Rightarrowđpcm\)

Nguyễn Tuấn Hưng
Xem chi tiết
Nguyen My Van
26 tháng 5 2022 lúc 8:58

\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)

Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)

\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)

Kitana
Xem chi tiết
Kamato Heiji
24 tháng 4 2021 lúc 8:47

Lời giải :

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\Leftrightarrow\dfrac{x^2}{a^2+b^2+c^2}-\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2+b^2+c^2}-\dfrac{y^2}{b^2}+\dfrac{z^2}{a^2+b^2+c^2}-\dfrac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\right)+y^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\right)+z^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\right)=0\)

Do \(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\ne0\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

Thay vào biểu thức P :

\(P=0^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{203}=0+1-1=0\)

Siêu sao bóng đá
Xem chi tiết
Siêu sao bóng đá
22 tháng 10 2017 lúc 13:41

Với điều kiện để x,y tồn tại:

Đặt t = b2 + c2 - a2 và k = 2bc

\(\Rightarrow x=\dfrac{t}{k}\)\(y=\dfrac{k-t}{k+t}\)

P = \(\dfrac{t}{k}+\dfrac{k-t}{k+t}+\dfrac{t\left(k-t\right)}{k\left(k+t\right)}\) ( Quy đồng mẫu số và thu gọn )

\(\Rightarrow\) P = 1

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Bà ngoại nghèo khó
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:54

1.

\(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\)

\(\Leftrightarrow\dfrac{a+b+c+2a+c}{2a+c}=\dfrac{a+b+c+2b}{2b}=\dfrac{a+b+c+b+c}{b+c}\)

\(\Leftrightarrow\dfrac{a+b+c}{2a+c}+1=\dfrac{a+b+c}{2b}+1=\dfrac{a+b+c}{b+c}+1\)

\(\Leftrightarrow\dfrac{a+b+c}{2a+c}=\dfrac{a+b+c}{2b}=\dfrac{a+b+c}{b+c}\)

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)

TH2: \(a+b+c\ne0\)

\(\Rightarrow\dfrac{1}{2a+c}=\dfrac{1}{2b}=\dfrac{1}{b+c}\)

\(\Rightarrow\left\{{}\begin{matrix}2a+c=b+c\\2b=b+c\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a=b\\b=c\end{matrix}\right.\) \(\Rightarrow2a=b=c\)

\(\Rightarrow P=\dfrac{\left(a+2a\right)\left(2a+2a\right)\left(2a+a\right)}{a.2a.2a}=9\)

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:55

Bài 2 đề sai

Ở phân thức thứ 2 không thể là \(\dfrac{y+3x-x}{x}\)

Nguyễn Hoàng Minh
4 tháng 12 2021 lúc 17:03

Bài 2:

\(P=\dfrac{x+3y}{y}\cdot\dfrac{y+3z}{z}\cdot\dfrac{z+3x}{x}=\dfrac{\left(x+3y\right)\left(y+3z\right)\left(z+3x\right)}{xyz}\)

Với \(x+y+z=0\)

\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}\\ \Leftrightarrow\dfrac{x+3y+x+y}{z}=\dfrac{y+3z+y+z}{x}=\dfrac{z+3x+x+z}{y}\\ \Leftrightarrow\dfrac{2\left(x+2y\right)}{z}=\dfrac{2\left(y+2z\right)}{x}=\dfrac{2\left(z+2x\right)}{y}\\ \Leftrightarrow\dfrac{2\left(y-z\right)}{z}=\dfrac{2\left(z-x\right)}{x}=\dfrac{2\left(x-y\right)}{y}\\ \Leftrightarrow\dfrac{2y-2z}{z}=\dfrac{2z-2x}{x}=\dfrac{2x-2y}{y}\\ \Leftrightarrow\dfrac{2y}{z}-2=\dfrac{2z}{x}-2=\dfrac{2x}{y}-2\\ \Leftrightarrow\dfrac{2y}{z}=\dfrac{2z}{x}=\dfrac{2x}{y}\\ \Leftrightarrow\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x}{y}\Leftrightarrow x=y=z=0\left(\text{trái với GT}\right)\)

Với \(x+y+z\ne0\)

\(\Leftrightarrow\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y-z=3z\\y+3z-x=3x\\z+3x-y=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=4z\\y+3z=4x\\z+3x=4y\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{4x\cdot4y\cdot4z}{xyz}=64\)

Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết