Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Linh
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Nguyễn Tuấn Kiệt
Xem chi tiết
Xyz OLM
12 tháng 11 2019 lúc 21:27

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

Khách vãng lai đã xóa
Hoàng Thu Hương
Xem chi tiết
LONG NGOC QUYNH
2 tháng 11 2017 lúc 4:27

bài 1:

a) (x+1)^2-(x-1)^2-3(x+1)(x-1)

=(x+1+x-1)(x+1-x+1)-3x^2-3

=2x^2-3x^2-3

=-x^2-3

An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Nguyệt Hà
Xem chi tiết
zZz Cool Kid_new zZz
19 tháng 11 2019 lúc 20:00

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

Khách vãng lai đã xóa
coolkid
19 tháng 11 2019 lúc 20:22

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

Khách vãng lai đã xóa
tth_new
20 tháng 11 2019 lúc 7:35

Bài 5 cần gì dùng Mincopxki chi cho mệt nhỉ?

\(\left(x^2+\frac{1}{x^2}\right)\left[2^2+\left(\frac{1}{2}\right)^2\right]\ge\left(2x+\frac{1}{2x}\right)^2\)

Do đó: \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{2x+\frac{1}{2x}}{\sqrt{2^2+\frac{1}{2^2}}}=\frac{4x+\frac{1}{x}}{\sqrt{17}}\)

Tương tự rồi cộng lại rồi dùng Cauchy-Schwarz

Khách vãng lai đã xóa
Phan Thu Uyên
Xem chi tiết
Etermintrude💫
24 tháng 5 2021 lúc 21:30

undefined

ʚƘεŋşɦїŋ ℌїɱʉɾαɞ‏
24 tháng 5 2021 lúc 21:32

a) Ta có /x+2/\(\ge\)0 với \(\forall\)x

nên /x+2/+50\(\ge\)0 với mọi x

Dấu "=" xảy ra \(\Leftrightarrow\)/x+2/=0

                       \(\Leftrightarrow\)x=\(-2\)

Vậy GTNN của A là 50 khi x=\(-2\)

b)Ta có /x-100/\(\ge\)0 với mọi x

           /y+200/\(\ge\)0 với mọi x

nên /x-100/+/y+200/-1\(\ge\)-1 với mọi x

Dấu"=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=100\\y=-200\end{matrix}\right.\)

Vậy GTNN của B=-1 khi x=100;y=-200

c)Ta có \(-\)/x+5/\(\le\)0 với mọi x

nên 2015\(-\)/x+5/\(\le\)2015 với mọi x

Dấu"=" xảy ra\(\Leftrightarrow\)x=\(-5\)

Vậy GTLN của bt trên là 2015 khi x=\(-5\)

Giải:

a) A=|x+2|+50

Nhận xét:

|x+2| ≥ 0 ∀ x

⇒|x+2|+50 ≥ 0+50

⇒            A ≥ 50

Vậy để Anhỏ nhất=50 thì khi và chỉ khi |x+2|=0

                                                              x+2=0

                                                                  x=0-2

                                                                  x=-2

b) B=|x-100|+|y+200|-1

Nhận xét: 

|x-100|+|y+200| ≥ 0 ∀ x;y

⇒|x-100|+|y+200|-1 ≥ 0-1

⇒                          A ≥ -1

Vậy để Bnhỏ nhất=-1 thì khi và chỉ khi |x-100|+|y+200|=0

                                                         ⇒x-100=0 và y+200=0

                                                            x=0+100 và y=0-200

                                                                x=100 và y=-200

c) C=2015-|x+5|

Nhận xét:

|x-5| ≥ 0

⇒2015-|x-5| ≥ 2015-0

⇒              A ≥ 2015

Vậy để Anhỏ nhất=2015 thì |x-5|=0

                                            x-5=0

                                               x=0+5

                                               x=5

Chúc bạn học tốt!

Hoang viet long 2682
Xem chi tiết
Nhật Hạ
11 tháng 9 2019 lúc 23:14

B1: Đk: 5x ≥ 0 => x ≥ 0

Vì |x + 1| ≥ 0 => |x + 1| = x + 1

     |x + 2| ≥ 0 => |x + 2| = x + 2

     |x + 3| ≥ 0 => |x + 3| = x + 3

     |x + 4| ≥ 0 => |x + 4| = x + 4

=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

 => x + 1 + x + 2 + x + 3 + x + 4 = 5x

=> 4x + 10 = 5x

=> x = 10

B2: Ta có: |x - 2018| = |2018 - x|

=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018

Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0

Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)

Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)

Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018

B3:

a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0

=> |x + 1| + |2y - 4| ≥ 0

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy...

b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0

 => |x - y + 1| + (y - 3)2 ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy...

c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0  ; |2x - 1| ≥ 0 

=> |x + y| + |x - z| + |2x - 1| ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)

Nhật Hạ
22 tháng 12 2019 lúc 13:20

coi lại mới thấy trình bày ngờ-u :)) 

B1: Đk: 5x ≥ 0 => x ≥ 0

=> x + 1 > 0 => |x + 1| = x + 1

=> x + 2 > 0 => |x + 2| = x + 2 

=> x + 3 > 0 => |x + 3| = x + 3 

=> x + 4 > 0 => |x + 4| = x + 4 

Ta có:  |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

=> .... Làm tiếp như dưới

Khách vãng lai đã xóa