cho tam giác abc vuông tại a (góc a = 90 độ ,ab<ac)tia phân giác của góc b cắt ac tại m.trên bc lấy điểm d sao cho bd=ba
a,c/m tam giác abm =tam giác dbm
b,md cắt ac tại e.c/m ad//với ce
c,c/m am<mc
cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H
a). Chứng minh: tam giác ABH = tam iacs ACH rồi suy ra AH là tia phân giác góc A
b). Từ H vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân
c). Đường thẳng vuông góc với AC tại C cắt tia AH cắt K. Chứng minh: EH // BK
d). Qua A, vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm N sao cho HM = HN. Chứng minh: M, A, N thẳng hàng
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H
c: Xét ΔACK và ΔABK có
AC=AB
\(\widehat{CAK}=\widehat{BAK}\)
AK chung
Do đó: ΔACK=ΔABK
Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)
=>BK\(\perp\)AB
hay BK//EH
Bài 1: Cho tam giác ABC vuông tại A giải Tam giác ABC biết: a) Góc B= 35 độ, BC=40 cm
b) AB=70cm, AC=60cm
c) AB=6cm, góc B=60 độ
d) AB=5cm, AC=7cm
2) Cho tam giác ABC góc A =90 độ đường cao AH biết HB=25cm, HC =64cm tín số đo góc B và C
3)Tam giác ABC có góc A =90 độ, AB=21cm, ggos C =40 độ tính độ dài đường phân giác BD
4) Tam giác ABC có góc B=70 độ góc C=35 độ đường cao AH=5cm tính độ dài AB,AC,B
Cho tam giác ABC (góc A =90 độ ). Tia phân giác góc A cắt cạnh BC tại D. Vẽ DM vuông góc AB tại M, DN vuông góc AC tại N. Tứ giác AMDN là hình gì?vì sao?
Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{NAM}=90^0\)
Do đó: AMDN là hình chữ nhật
mà AD là tia phân giác của \(\widehat{NAM}\)
nên AMDN là hình vuông
Cho tam giác ABC có góc A = 90 độ , tia phân giác của góc BAC cắt BC tại D . Vẽ đường thẳng qua D vuông góc với AB tại E . Tam giác ABC là tam giác gì ? Vì sao ?
Cho tam giác ABC vuông tại C, có A = 90 độ và tia phân giác của góc BAC cắt BC tại E. Kẻ EK vuông góc với AB tại K. Chứng minh a) tam giác ACE = tam giác AKE b) tam giác ABE là tam giác gì? Vì sao?
Sửa đề: \(\widehat{A}=60^0\)
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{EBA}+60^0=90^0\)
\(\Leftrightarrow\widehat{EBA}=30^0\)(1)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{EBA}=\widehat{EAB}\)
Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)(cmt)
nên ΔEAB cân tại E(Định lí đảo của tam giác cân)
Cho tam giác ABC cân tại A (Góc A < 90 độ) Ket AH vuônh góc BC a. CMR : tam giác ABH = tam giác ACH b.CM: AH là phân giác của tam giác ABC c. Từ H kẻ HE vuông góc AB tại E , HF vuông góc AC tại F . Gọi I là giao điểm của EF và AH . CM : AI là trung tuyến của tam giác AEF
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến
Cho tam giác ABC cân tại A (góc A < 90 độ).Kẻ BM vuông tại AC (M thuộc AC) , CD vuông tại AB (D thuộc AB). BM và CD cắt nhau tại E.
a, Chứng minh tam giác BDC = tam giác CMD
b, Chứng minh tam giác BCE cân
a. Xét \(2\Delta:\Delta BDC\) và \(\Delta CMD\) có:
\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(gt\right)\\BC.chung\end{matrix}\right.\)
\(\Rightarrow\Delta BDC=\Delta CMD\) (cạnh huyền - góc nhọn)
b. Vì \(\Delta BDC=\Delta CMD\) (theo câu a)
\(\Rightarrow\widehat{DCB}=\widehat{MBC}\) (2 góc tương ứng)
\(\Rightarrow\Delta BCE\) cân tại E
cho tam giác ABC cân tại A (A nhỏ hơn 90 độ có AM là đường trung tuyến)
a) chứng minh tam giác ABM = tam giác ACM và AM là tia phân giác góc A
b) từ M vẽ ME vuông góc với AB tại E; MF vuông góc với AC tại F, chứng minh tam giác MAE = tam giác MAF và tam giác MEF cân
c) trên tia đối của tia MA lấy điểm H sao cho MA=MH, gọi M là trung điểm (H,y là giao điểm của CB và AN) chứng minh BC bằng 6 lần MI
cần gấp ạ!!
cho tam giác ABC cân tại A ( A< 90 độ). kẻ BH vuông góc AC ( H thuộcAC ) C vuông góc AB ( K thuộc AB ) . BH và CK cắt nhau tạ E
A) chứng minh tam giác BHC =tam giác CKP
B) chứng minh tam giác EBC cân
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=góc HCB
=>ΔKBC=ΔHCB
b: ΔKBC=ΔHCB
=>góc EBC=góc ECB
=>ΔEBC cân tại E
cho tam giác ABC cân tại a ( góc a= 90 độ ) dựng AH vuông góc với BC tại H ( H thuộc BC)
a chứng minh tam giác ABC = tam giác AHC và HB=HC
b với AB =30cm bc =36cm tính độ dài AH
c kẽ đường trung tuyến BM của tam giác ABC cắt AH tại G tính độ dài AG và BM
gấp ạ giúp mình câu c
a: XétΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=BC/2=18(cm)
nên AH=24(cm)