Cho \(a+b+c=1\)
\(a^2+b^2+c^2=1\)
\(a^3+b^3+c^3=1\)
Tính GTBT: M=\(a^{200}+b^{2000}+c^{20000}\)
Cho 3 số abc thỏa mãn :\(a^3+b^3+c^3=3abc\)a;b;c đôi một khác nhau
Tính GTBT:
\(B=\frac{1}{a^2+b^2+-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
A= 1-2+3-4+...+59-60
B= 17- {15-[23 -(5+4/3)]-13}+2/3
C=-3/20-3/200-3/2000-3/20000
A= 1-2+3-4+...+59-60
=(1-2)+(3-4)+...+(59-60)
=-1+(-1)+...+(-1)
=(-1)*30
= -30
Đáp án : -30
( 1- 2 ) + ( 3 - 4 ) + ....+( 59 - 60 )
= ( -1 ) + ( -1 ) + .....+ ( -1 )
= Từ 1 đến 60 có 60 số. Vậy có 30 tổng ( số hạng ).
=> Nên tổng trên có kết quả là : ( -1 ) * 30
= -30
Vậy đáp án là -30.
Cho a,b,c thuộc R thỏa mãn a+b+c=1 Tính GTBT: A=\(\dfrac{a^{3^{ }}+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Ta có:
** \(a^3+b^3 +c^3 -3abc \)
\(=(a+b)^3+c^3 - 3ab(a+b) - 3abc \)
\(=(a+b+c)[(a+b)^2 - c(a+b)+ c^2] - 3ab(a+b+c) \)
\(=(a+b+c)(a^2 + 2ab+b^2-ca-bc+c^2) - 3ab(a+b+c) \)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) \)
\(=a^2+b^2+c^2-ab-bc-ca\)
** \((a-b)^2 + (b-c)^2+(c- a)^2\)
\(=a^2+b^2+b^2+c^2+c^2+a^2 - 2(ab+bc+ca)\)
\(=2(a^2+b^2+c^2-ab-bc-ca)\)
\(\Rightarrow A=\dfrac{a^2+b^2+c^2-ab-bc-ca}{2\left(a^2+b^2+c^2-ab-bc-ca\right)}=\dfrac{1}{2}\)
1 .Cho x+y=a và xy=b , tính giá trị của biểu thức :
a. x^2+y^2
b. x^3+y^3
c. x^4+y^4
d. x^5+y^5
2 . a.Cho x+y=1 tính GTBT x^3+y^3+xy
b. cho x-y=1 tính GTBT x^3-y^3-xy
c. cho x+y=a , x^2+y^2=b tính x^3+y^3
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
\(1.\)
\(a)\)
\(x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=a^2-2b\)
\(b)\)
\(x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=a[\left(x+y\right)^2-3xy]\)
\(=a\left(a^2-3b\right)\)
\(=a^3-3ab\)
\(c)\)
\(x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
\(d)\)
\(x^5+y^5\)
\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)
\(=a^5-5a^3b+5ab^2\)
cho a^3+b^3+c^3=3abc
tính gtbt A= (1-a/b)(1+b/c)(1+c/a)
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2+c^2-\left(a+b\right)c\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[a^2+b^2+2ab+c^2-ac-bc-3ab\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0.2\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
TH1 : \(a+b+c=0\)
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
\(=\frac{\left(-c\right)}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2 : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow a-b=b-c=c-a=0\)
\(\Rightarrow a=b=c\)
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Vậy ...
Cho a+b=1. Tính GTbt A= a^3+ b^3+ 3ab(a^2+b^2)+ 6a^2b^2(a+b)
Rút gọn các bt sau:
(a+b+c)^3- (b+c-a)^3- (a+c-b)^3- (a+b-c)^3
Bài 1:
\(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1^3-3ab+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2=1\)
cho 3 số a,b,c khác o thỏa mãn 1/a+1/b+1/c=1/(a+b+c) Tinh gtbt M=(a^3+b^3)(b^7+c^7)(a^2011+b^2011)
bạn khai thác gt ta đc : (b+c)(a+b)(a+c)=0
b=-c
a=-b
a=-1
M=(a^3+b^3)(b^7+c^7)(a^2011+|c^2011)
vì
ta có 3 trường hợp
b=-c nên (b^7+c^7=0)
a=-b nên (a^3+b^3)=0
a=-1nên (a^2011+b^2011)=0
M=0
cho 1/a + 1/b + 1/c = 2 và a+b+c=a*b*c. tính gtbt: 1/a^2+1/b^2+1/c^2
Chỗ a+b+c=a*b*c* đó là sao bạn? Nếu như đó là a+b+c=abc thì mình giải theo cách này.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=>\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{bc}\right)=4-2.\frac{a+b+c}{abc}\)= 2 (vì a+b+c=abc)
Cho \(a+b+c=1\) Tính GTBT
\(A=\frac{a-b}{b+1=2c}+\frac{3b+4c}{c-a+2}-\frac{c}{3-2a-b}\)