Bài 1:
\(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1^3-3ab+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2=1\)
Bài 1:
\(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1^3-3ab+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2=1\)
Bài 1:Rút gọn rồi tính giá trị biểu thức
a,A=(x-1)^3-4x(x+1)(x-1)+3(x-1)(x^2+x+1) với x=2
b,B=126y^3+(x-5y)(x^2+25y^2+5xy) với x=-5,y=-3
c,C=a^3+b^3-(a^2-2ab+b^2)(a-b) với a=-4,b=4
Chứng minh các hằng đẳng thức sau :
a) Nếu x+y = a và xy = b thì x2 + y2 = a2 - 2b và x3 + y3 = a3 - 3ab
b) Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc
c) Nếu a + b + c = 2m thì 4m(m - a ) = b2 + c2 - a2 - 2bc
Tính:
a, \(N=8a^3-27b^3\) biết ab=12 và 2a-3b=5
b, \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)biết a+b=1
c, \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)biết xy=4 và x+2y=8
Rút gọn bt sau
(a+b+c)^3- (b+c-a)^3- (a+c-b)^3- (a+b-c)^3
1. Chứng minh các hằng đẳng thức
a. a3 + b3 + c3 - 3abc= (a + b + c )(a2+ b2 + c2 - ab - bc - ca)
2. Cho (x + 2y)(x2 - 2xy + 4y2) =0 và (x - 2y)(x2 + 2xy + 4y2) = 16. Tìm x và y
3. Cho a + b + c = 0. Cmr : M = a3 +b3 + 3ab(a2 + b2) + 6a2b2(a + b)
Rút gọn các biểu thức sau :
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
c) \(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
1,Cho a + b = 1. TÍnh giá trị biểu thức A: a3 + b3 + 3a.b.(a2 + b2)+6a2 .b2 .(a + b)
2,Rút gọn biểu thức sau:
(a + b + c)3- (b + c - a)3-(a + c - b)3 - (a + b - c)3
3,
Chứng minh rằng nếu p và p2 + 8 là các sô nguyên tố thì p2 +2 cũng là số nguyên tố
Cho a,b,c khác 0, thỏa mãn a+b+c=a.b.c và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\) .Chứng minh rằng \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
cho a3+b3=c(3ab-c2) và a+b+c=3
tính A=675(a2018+b2018+c2018)+1