Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Mai Thị Thúy
Xem chi tiết
Đạm Đoàn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Tử Nguyệt Hàn
24 tháng 8 2021 lúc 18:05

\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)

Akai Haruma
24 tháng 8 2021 lúc 18:18

Lời giải:
a.

PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)

b.

ĐKXĐ: $x\geq \frac{3}{2}$

PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)

\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)

\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)

\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:56

a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)

\(\Leftrightarrow\left|x-3\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\left(nhận\right)\)

Lê Hương Giang
Xem chi tiết
Akai Haruma
24 tháng 8 2021 lúc 18:04

Lời giải:

a. Đề thiếu

b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$

$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$

$\Leftrightarrow 2x-3=3$

$\Leftrightarrow x=3$ (tm)

Nếu $1\leq x< 2$ thì:

$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)

Nếu $x< 1$ thì:

$1-x+2-x=3$

$\Leftrightarrow x=0$ (tm)

Duong Thi Minh
Xem chi tiết
Thắng Nguyễn
27 tháng 3 2017 lúc 19:08

cách khác đơn giản hơn nhiều 

Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

Xét Ư(1)={1;-1}={....}

Dễ nhé, tự làm nốt

Thắng Nguyễn
27 tháng 3 2017 lúc 19:03

Đk: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)

Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)

\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)

Dễ  thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)

\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)

Nam Đinh Doãn
Xem chi tiết
hà ngọc ánh
Xem chi tiết
s2 Lắc Lư  s2
11 tháng 5 2017 lúc 20:50

đề có sai ko bạn ơi

Trần Hoài Bão
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
3 tháng 8 2017 lúc 9:58

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

6.Phạm Minh Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:41

b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow x^2-6x+9=3\)

\(\Leftrightarrow x^2-6x+6=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)