Rút gọn
a)\(\sqrt{4-2\sqrt{ }3}-\sqrt{3}\)
b)\(\sqrt{11+6\sqrt{ }2}-3+\sqrt{2}\)
c)\(\sqrt{7+2\sqrt{ }10}-\sqrt{7-2\sqrt{ }10}\)
d)(\(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\)):\(\sqrt{15}\)
Rút gọn :
\(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(B=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{5}}}}\)
\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(D=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(E=\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
A = \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{5}+\sqrt{2}\right)}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\) = \(\dfrac{3}{1}\) = \(3\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
C = \(\left(4+\sqrt{15}\right).\left(\sqrt{40-10\sqrt{15}}-\sqrt{24-6\sqrt{15}}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{\left(5-\sqrt{15}\right)^2}-\sqrt{\left(\sqrt{15}-3\right)^2}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\left(\sqrt{15}-3\right)\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\sqrt{15}+3\right)\)
C = \(\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
C = \(32-8\sqrt{15}+8\sqrt{15}-30=2\)
D = \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{30-10\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{\left(5-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\left(\sqrt{5}-1\right)\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\)
D = \(\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
D = \(18+6\sqrt{5}-6\sqrt{5}-10=8\)
E = \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{5}}\)
E = \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
E = \(3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
Rút gọn các biểu thức sau:
9, A = \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
10, A = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
11, A = \(\text{}\text{}\text{}\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
12, A = \(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
13, A = \(\sqrt{9-4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3=6
13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)
\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)
Rút gọn các biểu thức sau:
a) \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}\)
b) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
c) \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}\)
d) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e) \(\dfrac{\sqrt{a}-\sqrt{b}^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\) với a > 0, b > 0
a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)
c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)
d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)
\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)
e, Ghi đúng đề.
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
k,\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\) l,\(\left(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\right):\sqrt{15}\)
k: =3căn 2-2căn 3+2căn 3-2=3căn2-2
l: =20*căn 20-15*căn 45+5*căn 5
=40căn 5-45căn 5+5căn 5=0
Rút gọn
A=\(\sqrt{8-2\sqrt{15}}\)
B=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
C=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(A=\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{15}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)
\(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}-\sqrt{\left(4-\sqrt{7}\right)^2}\)
\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}-\left|4-\sqrt{7}\right|\)
\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{16-7}-4+\sqrt{7}\)
\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=3-4+\sqrt{7}=-1+\sqrt{7}\)
\(\Leftrightarrow B=\frac{-1+\sqrt{7}}{\sqrt{4-\sqrt{7}}}\)
tíck mình nha bn thanks !!!!!!!!!!
rút gọn biểu thức: a)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
b)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c)\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
= \(\sqrt{7}+1-\sqrt{7}+1=2\)
=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)
b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
= \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)
= \(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)
=> B=\(\sqrt{5}+1\)
c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)
=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)
= \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
= \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)= \(2\sqrt{5}\)
=> A=\(\sqrt{5}\)
Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
= \(A-\sqrt{6-2\sqrt{5}}\)
= \(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1
Phần a) chỗ cuối viết thiếu dấu =.
Sẽ là A=\(\sqrt{2}\)nha
Bài 1: Rút gọn
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\) ,
b)\(\sqrt{4+\sqrt{15}}\)+\(\sqrt{4-\sqrt{15}}\)-\(2\sqrt{3-\sqrt{5}}\)
c)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
d)B=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
e)C=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
f)D= \(\dfrac{\left(5+4\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
= 1
Rút gọn biểu thức:
a)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b)\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
c)\(5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}\)
d)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
e)\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
thực hiện phép tính
a)\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\frac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
b)\(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
c)\(\left(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\right):\sqrt{15}\)