a,
\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\\ =\sqrt{3-2\cdot1\cdot\sqrt{3}+1}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot1\cdot\sqrt{3}+1^2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}\\ =-1\)
b,
\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-3+\sqrt{2}\\ =\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
c,
\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}\\ =\sqrt{5+2\cdot\sqrt{2\cdot5}+2}-\sqrt{5-2\cdot\sqrt{2\cdot5}+2}\\ =\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}\\ =2\sqrt{2}\)
d,
\(\left(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\right):\sqrt{15}\\ =\left(20\cdot\sqrt{20}\cdot\sqrt{15}-15\cdot\sqrt{45}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\left(20\cdot2\cdot\sqrt{5}\cdot\sqrt{15}-15\cdot3\cdot\sqrt{5}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\sqrt{15}\cdot\left(20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\right):\sqrt{15}\\ =20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\\ =40\sqrt{5}-45\sqrt{5}+5\sqrt{5}\\ =0\)