Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Moon
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:45

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 15:13

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

Quỳnh Như
Xem chi tiết
mynameisbro
Xem chi tiết
HT.Phong (9A5)
11 tháng 8 2023 lúc 9:30

Đặt: 

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)

\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)  

\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

Mà: \(4\sqrt{5}>1\)

Nên: \(A^2< B^2\)

\(\Rightarrow A< B\)

Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 9:19

Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

=>A^2=(căn 10)^2=10=9+1

Đặt B=2+căn 5

=>B^2=(2+căn 5)^2=9+4căn 5

1<4căn 5

=>9+1<9+4căn 5

=>A^2<B^2

=>A<B

Võ Việt Hoàng
11 tháng 8 2023 lúc 10:24

Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(\Rightarrow A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=6+2\sqrt{9-5}=6+2.2=10\)

\(B=2+\sqrt{5}\Rightarrow B^2=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

\(>9+1=10=A^2\)

\(\Rightarrow B^2>A^2\Rightarrow B>A\)

Vậy, B>A

Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 22:38

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

Tran Phut
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 11:23

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

HT.Phong (9A5)
10 tháng 8 2023 lúc 11:34

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

HT.Phong (9A5)
10 tháng 8 2023 lúc 11:19

1/ \(\sqrt[3]{54}-\sqrt[3]{16}\)

\(=\sqrt[3]{3^3\cdot2}-\sqrt[3]{2^3\cdot2}\)

\(=3\sqrt[2]{3}-2\sqrt[3]{2}\)

\(=\left(3-2\right)\sqrt[3]{2}\)

\(=\sqrt[3]{2}\)

Momozono Nanami
Xem chi tiết
ducchinhle
30 tháng 8 2018 lúc 17:33

a^3 = 5\(\sqrt{2}\)  b^3= 5\(\sqrt[3]{2}\).\(\sqrt{5\sqrt[3]{2}}\)

ta co \(\sqrt{5\sqrt[3]{2}}\)>2 >\(\sqrt{2}\)

=> b^3 >a^3 => b>a

Lê Thị Thuy Thúy
Xem chi tiết
oOoThiên_Hương oOo
1 tháng 7 2017 lúc 12:19

dell bt

Hoàng Phúc Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 13:31

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)

\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

Do đó: A=B

Nguyễn Ngọc Huy Toàn
21 tháng 5 2022 lúc 13:34

\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)

\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

--> Bằng nhau

Kimm
Xem chi tiết