Thực hiện phép tính
(x-1)(x+1)(x+2)
Thực hiện phép tính
(x^2-x+1)(x+1)
Thực hiện phép tính: (x – 1)(x + 1)(x + 2)
(x – 1)(x + 1)(x + 2)
= ( x 2 + x – x – 1)(x + 2)
= ( x 2 – 1)(x + 2)
= x 2 ( x + 2) – 1.(x +2)
= x 3 + 2 x 2 – x – 2
Thực hiện phép tính:
x(1-x)+(x-1)2
`@` `\text {Ans}`
`\downarrow`
`x(1-x) + (x-1)^2`
`= x-x^2 + x^2 - 2x + 1`
`= (x-2x) + (-x^2 + x^2) + 1`
`= -x+1`
x ( 1 - x ) + ( x - 1 )2 = x - x2 + x2 - 2x + 1 = -x + 1 = 1 - x
Thực hiện các phép tính sau :
(1/x^2+x - 2-x/x+1) : (1/x+x-2)
\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x-2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{x^2-2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)
\(=\dfrac{1}{x+1}\)
thực hiện phép tính (1/x^2+x-2-x/x+1):(1/x+x-2)
Thực hiện phép tính x + 1 x + 2 : x + 2 x + 3 : x + 3 x + 1
\(\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{x^2+1}+1\)
THỰC HIỆN PHÉP TÍNH
Đặt \(x^2+1=a\)
Ta có: \(\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{x^2+1}+1\)
\(=\dfrac{1}{a-x}+\dfrac{a+1}{a}+1\)
\(=\dfrac{a}{a\left(a-x\right)}+\dfrac{\left(a+1\right)\left(a-x\right)}{a\left(a-x\right)}+\dfrac{a\left(a-x\right)}{a\left(a-x\right)}\)
\(=\dfrac{a+a^2-ax+a-x+a^2-ax}{a\left(a-x\right)}\)
\(=\dfrac{2a^2+2a-2ax-x}{a\left(a-x\right)}\)
\(=\dfrac{2\left(x^2+1\right)^2+2\left(x^2+1\right)-2x\left(x^2+1\right)-x}{\left(x^2+1\right)\left(x^2+1-x\right)}\)
\(=\dfrac{2\left(x^4+2x^2+1\right)+2x^2+2-2x^3-2x-x}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{2x^4+4x^2+2+2x^2+2-2x^3-3x}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{2x^4-2x^3+6x^2-3x+4}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Thực hiện phép tính: 1 ( x - 1 ) ( x - 2 ) + 2 ( x - 2 ) ( x - 3 ) - 3 ( x - 3 ) ( x - 1 )
Thực hiện phép tính:
\(\dfrac{x+1}{x^2-4}:\dfrac{x+1}{x+2}\)
\(\dfrac{x+1}{x^2-4}:\dfrac{x+1}{x+2}=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+1}{x+2}=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{x+1}=x-2\)
thực hiện phép tính
a, x/x-2+ 2/2-x
b, x^2/x^2 -1 + x/(1-x)(x+1)
a)
\(\dfrac{x}{x-2}+\dfrac{2}{2-x}\\ =\dfrac{x}{x-2}-\dfrac{2}{x-2}\\ =\dfrac{x-2}{x-2}\\ =1\)
b)
\(\dfrac{x^2}{x^2}-1\\ =1-1\\ =0??\)