Phân tích thành nhân tử: a) (x +y)^2-(x-y)^2 b) (3x+1)^2 -(x+1)^2 c) x^3+y^3+z^3 -3xyz
phân tích thành nhân tử
a,(x+y)^2-(x-y)^2
b,(3x+1)^2-(x+1)^2
c,x^3+y^3+z^3-3xyz
a) (x+y)2-(x-y)2
=(x+y)(x-y)
b)(3x+1)2-(x+1)2
=[(3x+1)+(x+1)].[(3x+1)-(x+1)]
=(3x+1+x+1)(3x+1-x-1)
phân tích đa thức thành nhân tử
(3x+1)^2-(3x-1)^2
(x+y)^2-(x-y)^2
(x+y)^3-(x-y)^3
x^3+y^3+z^3-3xyz
\(\left(3x+1\right)^2-\left(3x-1\right)^2\)
\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)
\(=2\cdot6x\)
\(=12x\)
_________
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
\(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\cdot\left(x^2+3y^2\right)\)
______
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)
Phân tích thành nhân tử:
a) (x+y)-(x-y)2
b) (3x+1)2-(x+1)2
c) x3+y3+z3-3xyz
a) Đề bài phải là : \(\left(x+y\right)^2-\left(x-y\right)^2\)thì mới phân tích được.
Nếu đề bài như trên ta có:
\(\left(x+y\right)^2-\left(x-y\right)^2=\)\(\left(x+y-x+y\right)\left(x+y+x-y\right)=2x\cdot2y=4xy\)
b) Ta có: \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
= \(2x\cdot\left(4x+2\right)=2x\cdot2\cdot\left(2x+1\right)=4x\cdot\left(2x+1\right)\)
c) Ta có : \(x^3+y^3+z^3-3xyz\)
= \(\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xy\)
=\(\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y+z\right)\)
=\(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
=\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Phân tích thành nhân tử
a) (3x+1)^2 - (x+1)^2
b) x^3 + y^3 +z^3 - 3xyz
a) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=2x.2\left(2x+1\right)=4x\left(2x+1\right)\)
a) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)
b) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+2xy+xz+yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=\frac{\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{2}\)
Phân tích đa thức thành nhân tử:
a) (x+y)2-(x-y)2
b) (3x+1)2- (x+1)2
c) x3+y3+z3-3xyz
hằng đẳng thức a2-b2=(a-b)(a+b) í bạn
Phân tích đa thức thành nhân tử:
a) ( 3 x + l ) 2 - ( 3 x - l ) 2 ; b) ( x + y ) 2 - ( x - y ) 2 ;
c) ( x + y ) 3 - ( x - y ) 3 ; d) x 3 + y 3 + z 3 - 3xyz.
a) 12x. b) 4xy
c) 2y(3 x 2 + y 2 ).
d) (x + y + z)( x 2 + y 2 + z 2 – xy – xz - yz).
Phân tích đa thức thành nhân tử:
a) (x+y)2-(x-y)2
b) (3x+1)2-(x+1)2
c) x3+y3+z3-3xyz
d) a3-a2x-ay+xy
e) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
Phân tích thành nhân tử
a) x^4+x^3+6x^2+5x+5
b) x^3+x-2
c) x^3+3x^2-4
d) xy(x+y) + yz(y+z) + xz(x+z) + 3xyz
a/ \(=x^4+x^3+x^2+5x^2+5x+5\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=\left(x^2+5\right)\left(x^2+x+1\right)\)
b/ \(=x^3+x^2+2x-x^2-x-2\)
\(=x\left(x^2+x+2\right)-\left(x^2+x+2\right)=\left(x-1\right)\left(x^2+x+2\right)\)
c/ \(=x^3+4x^2+4x-x^2-4x-4\)
\(=x\left(x^2+4x+4\right)-\left(x^2+4x+4\right)=\left(x-1\right)\left(x+2\right)^2\)
câu d khó quá , mk lm k nổi , sr nha ^^
a) x4 + x3 + 6x2 + 5x + 5
= x4 + x3 + x2 + 5x2 + 5x + 5
= x2 ( x2 + x + 1) + 5 (x2 + x + 1)
= (x2 + x + 1) (x2 + 5)
b) x3 + x - 2
= x3 + x2 + 2x - x2 - x - 2
= x (x2 + x + 2) - (x2 + x + 2)
= (x2 + x + 2) (x - 1)
c) x3 + 3x2 - 4
= x3 + 4x2 + 4x - x2 - 4x - 4
= x (x2 + 4x + 4) - (x2 + 4x + 4)
= (x2 + 4x + 4) (x - 1)
= (x + 2)2 (x - 1)
d) xy(x + y) + yz(y + z) + xz(x + z) + 3xyz
= xy(x + y) + xyz + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + y + z)
= (x + y + z) (xy + yz + xz)
Phân tích các đa thức sau thành nhân tử : 14x^2y-21xy^2+28x^2y^2 x(x+y)-5x-5y 10x(x-y)-8(y-x ) (3x+1)^2 -(x+1)^2 x^3+y^3+z^3-3xyz 5x^2-10xy+5y^2-20z^2 x^3-x+3x^2y+3x^2y+3xy^2+y^3-y Mn đc lời giải chi tiết từng bước làm 1
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))