tìm GTNN: 4x^2 - 4x + 3
Tìm GTNN của A= 4x2 - 4x + 3
A=4x2-4x+3
<=> A=4x2-4x+1+2
<=> A=(2x-1)2+2
Vì (2x-1)2\(\ge0\)nên \(\left(2x-1\right)^2+2\ge2\)
Vậy MinA=2 khi x=\(\frac{1}{2}\)
cho 4x+9y = 3. Tìm GTNN của 4x2+9y2
Tìm GTNN A=(x-1).(x-3)+11
Tìm GTLN B=5-4x^2+4x
a, (x-1)(x-3)+11
=x2-3x-x+3+11
=(x-2)2+10
Vì..................................
b,5-4x2+4x
=-(4x2-4x+4)+9
=-(2x-2)2+9
...........................................................
Tìm GTNN của :
\(4x^2-4x-3|2x-1|+3\)
Tìm GTNN của P= 4x2+y2-4x-2y+3
P=(4x2 -4x+1)+(y2- 2x+1)+1.
<=>P=(2x-1)^2+(x-1)^2+1.
Ta có:(2x-1)^2>=0với mọi x.
(y-1)^2>=0 với mọi y.
=>P>=1 với mọi x,y.
Dấu bằng sảy ra khi 2x-1=0 và y-1=0 <=>x=1/2 và y=1
tìm gtnn
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{3}{2}\)
1/GTNN 4x^2+4x-1
2/căn(3x^2-4x +3)=1-2x . biết x=trừ căn a . TÌM a?
help. !!!
Bài 1:
\(A=4x^2+4x-1\)
\(=4x^2+4x+1-2\)
\(=\left(2x+1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
Bài 2:
Bình phương 2 vế
\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)
\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)
\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)
\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)
4x^2+4x-1
=4x^2+4x+1-2
=(2x+1)^2-2
=> (2x+1)^2\(\ge\)0 voi moi x
=> (2x+1)^2 \(\ge\)2
=> GTNN la 2
Tìm GTNN của
\(N=4x^2-4x-3|2x-1|+3\)
N=\(\left(2x-1\right)^2-3|2x-1|+2\)
=\(\left(|2x-1|-\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\ge-\frac{1}{4}\)
Vậy minP=-1/4 khi \(\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{1}{4}\end{cases}}\)
Tìm GTNN của phân thức: \(\dfrac{3+\left|2x-1\right|}{14}\)
Tìm GTLN của phân thức: \(\dfrac{-4x^2+4x}{15}\)
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)