một vật dao động điều hoà theo pt x=4cos(20\(\pi t-\dfrac{\pi}{2}\) ) cm. quãng đường vật đi được trong thời gian t=0,05s là
Một vật dao động điều hoà theo phương trình x = 10cos(\(\pi t+\dfrac{\pi}{3}\)) cm. Thời gian tính từ lúc vật bắt đầu dao động động (t = 0) đến khi vật đi được quãng đường 30 cm là bao nhiêu
\(T=\dfrac{2\pi}{w}=\dfrac{2\pi}{\pi}=2\left(s\right)\)
Trong 1 nửa chu kì, vật di chuyển được quãng đường là \(2\cdot10=20\left(cm\right)\)
Vật khi đó phải đi từ vị trí có pha bằng \(-\dfrac{\pi}{3}\) đến vị trí có pha bằng \(\dfrac{\pi}{3}\), vì vật sẽ di chuyển được quãng đường \(\dfrac{A}{2}+\dfrac{A}{2}=A=10\left(cm\right)\)
Vậy thời gian vật phải đi là: \(\dfrac{T}{2}+\dfrac{T}{6}=\dfrac{2}{2}+\dfrac{2}{6}=\dfrac{4}{3}\left(s\right)\)
Một vật dao động điều hoà theo phương trình xin 10cos(\(\pi\)t+\(\pi\)/3)cm). Thời gian tính từ lúc vật bắt đầu dao động (t = 0) đến khi vật đi được quãng đường 30 cm là
S=30=20+10=T/2+T/6=2T/3
T=2pi/pi=2
=> thời gian = 2*2/3=4/3s
Một vật dao động điều hòa,khoảng thời gian giữa hai lần liên tiếp vật qua vị trí cân bằng là 0,5s ,quãng đường vật đi được trong 2s là 32cm. Gốc thời gian được chọn lúc vật qua li độ x= 2căn3 cm theo chiều dương .phương trình dao động của vật là.
A. X= 4cos(2pi-pi/6)cm
B.x=8cos(pit+pi/3)cm
C.x=4cos(2pit-pi/3)cm
D.x=8cos(pit+pi/6)cm
Một vật khối lượng m = 1kg dao động điều hòa theo phương ngang với pt x = 4cos\(\omega\)t (cm). Sau thời gian t =\(\frac{\pi}{30}\)s kể từ lúc bắt đầu dao động, vật đi được quãng đường 6 cm.Cơ năng của vật là bao nhiêu?
Biểu diễn dao động bằng véc tơ quay:
Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.
Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)
\(\Rightarrow T=\dfrac{\pi}{10} (s)\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)
Một vật dao động điều hòa theo phương trình: x= 5cos(10\(\pi\)t-\(\pi\)) cm. Thời gian vật đi được quãng đường 12,5 cm (kể từ t = 0) là
Một vật dao động điều hoà theo phương trình \(x=2\cos (4\pi t - \frac \pi 3)(cm)\). Quãng đường vật đi được trong thời gian t = 0,125s là
A.1cm.
B.2cm.
C.4cm.
D.1,27cm.
T = 0,5s
0,125s = T/4, véc tơ quay đã quay 1 góc 900.
Biểu điễn dao động điều hòa bằng véc tơ quay ta tính được quãng đường:
\(S=1+2-2\cos30=1,27\)cm.
Một chất điểm dao động điều hòa với phương trình x=4cos(\(\pi\)t +\(\frac{\pi}{6}\))cm. Kể từ lúc t=0, vật đi được quãng đường 50cm trong khoảng thời gian là bao nhiêu?
Một vật dao động điều hoà theo phương trình x= 4cos (πt - 2π\3) cm.Trong khoảng thời gian 5 phút vật đi được quãng đường
\(T=\frac{2\pi}{\omega}=\frac{2\pi}{\pi}=2\left(s\right)\)
\(\frac{\Delta t}{T}=\frac{5.60}{2}=150\Rightarrow S=150.4A=150.4.4=2400\left(cm\right)\)
Một vật dao động điều hòa dọc theo trục Ox với phương trình: \(x=5cos\left(\pi t+\dfrac{2\pi}{3}\right)cm\). Quãng đường vật đi được từ thời điểm t1= 2(s)đến thời điểm t2= \(\dfrac{17}{3}\)(s) là bn?
Đối với những bài tìm quãng đường trong khoảng từ t1 đến t2 thì bạn lấy t2-t1 rồi phân tích chúng ra thành \(\left[{}\begin{matrix}t_2-t_1=n.\dfrac{T}{2}+t'\\t_2-t_1=n.T+t''\end{matrix}\right.\) để dễ dàng tính. Tuyệt đối ko được phân tích thành T/4 hay T/3; T/6;T/v.v. bởi nó ko luôn đúng trong các trường hợp, nếu bạn cần mình sẽ lấy ví dụ cụ thể. Giờ mình sẽ áp dụng vô bài của bạn
\(t_2-t_1=\dfrac{17}{3}-2=\dfrac{11}{3}\left(s\right)=3+\dfrac{2}{3}\)
\(T=\dfrac{2\pi}{\pi}=2s\Rightarrow t_2-t_1=3.\dfrac{T}{2}+\dfrac{2}{3}\)
Trong 3T/2 vật đi được quãng đường là: \(S_1=6A=30\left(cm\right)\)
Tại thời điểm t1=2s, lúc này vật đã quay được:\(\varphi=2\pi\left(rad\right)\) nghĩa là quay về vị trí ban đầu
Trong 2/3 s vật quay được góc: \(\varphi=\dfrac{2}{3}\pi\left(rad\right)\)
Sử dụng đường tròn lượng giác, vật ở vị trí có pha là 2pi/3, quay được góc 2pi/3 thì lúc này vật có li độ là: \(x=-2,5\left(cm\right)\)
Nghĩa là vật đi từ vị trí có li độ x1=-2,5 theo chiều âm đến vị trí có li độ x2=-2,5 theo chiều dương, vậy quãng đường vật đi được là: \(S_2=\dfrac{A}{2}+\dfrac{A}{2}=A=5\left(cm\right)\)
Vậy tổng quãng đường vật đi được là: \(S=S_1+S_2=35\left(cm\right)\)