Cho \(x^2-y^2-z^2=0\)
CMR:(5x-3y+4z)(5x-3y-4z)=\(\left(3x-5y\right)^2\)
Cho \(^{x^2-y^2-z^2=0.CMR:\left(5X-3Y+4Z\right)\left(5Z-3Y-4Z\right)=\left(3X-5Y\right)^2}\)
Ta có \(x^2-y^2-z^2=0\Rightarrow z^2=x^2-y^2\)
Có \(VT=\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)\(=\left(5x-3y\right)^2-16z^2=\left(5x-3y\right)^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2=9x^2-30xy+25y^2\)
\(=\left(3x\right)^2-2.3x.5y+\left(5y\right)^2=\left(3x-5y\right)^2=VP\left(đpcm\right)\)
CMR : Nếu x^2 - y^2 - z^2 = 0 thì ( 5x-3y+4z ) . ( 5x-3y - 4z ) = ( 3x - 5y )^2
Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)
Biến đổi vế trái ta có :
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2\)
\(=9x^2-30xy+25y^2\)
\(=\left(3x-5y\right)^2\) ( ĐPCM)
x^2-y^2-z^2=0.CMR
(5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
Cho \(x^2-y^2-z^2=0\)
Chứng minh rằng: \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)-16z^2-\left(3x-5y\right)^2=0\)
\(\Rightarrow25x^2-30xy+9y^2-16z^2-\left(9x^2-30xy+25y^2\right)=0\)
\(\Rightarrow25x^2-30xy+9y^2-16z^2-9x^2+30xy-25y^2=0\)
\(\Rightarrow25\left(x^2-y^2\right)+9\left(x^2-y^2\right)-16z^2=0\)
\(\Rightarrow34\left(x^2-y^2\right)-16z^2=0\)
\(Đây\)\(mới\)\(là\)\(câu\)\(trả\)\(lời\)\(đúng\)
\(ta\)\(có\)\(16\left(x^2-y^2-z^2\right)=16\left(x^2-y^2\right)-16z^2=8\left(x-y\right)2\left(x-y\right)-\left(4z\right)^2=\left(8x-8y\right)\left(2x+2y\right)-\left(4z\right)^2=\left(5x-3y+3x-5y\right)\left(5x-3y-3x+5y\right)-\left(4z\right)^2\)
\(=\left(5x-3y\right)^2-\left(3x-5y\right)^2-16z^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
Cho (5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
CMR: x^2=y^2+z^2
Ta có \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)
\(\Leftrightarrow16x^2=16y^2+16z^2\Leftrightarrow x^2=y^2+z^2\)
(5x - 3y + 4z) . (5x - 3y - 4z) = (3x - 5y)2
(5x - 3y)2 - 16z2 = (3x - 5y)2
25x2 - 2.5x.3y + 9y2 - 16z2 = 9x2 - 2.3x.5y + 25y2
16x2 + 9y2 - 16z2 - 25y2 = 0
16x2 - 16y2 - 16z2 = 0
x2 - y2 - z2 = 0
x2 = y2 + z2
cho x^2-y^2-z^2=0 chứng minh rằng: (5x-3y+4z)*(5x-3y-4z)=(3x-5y)^2
cho x2-y2-z2=0.CMR
(5x-3y+4z).(5x-37-4z)=(3x-5y)2
Vì x2 - y2 - z2 = 0 => x2 - y2 = z2
Biến đổi vế trái ta có:
(5x-3y+4z)(5x-37-4z)=(3x-5y)2 - 16z2
=25x2 - 30xy + 9y2 - 16(x2 - y2)
= 25x2 - 30xy + 9y2 - 16x2 + 16y2
= 9x2 - 30xy + 25y2
= (3x-5y)2 (đpcm)
Cho x2-y2-z2=0
C/m (5x-3y+4z).(5x-3y-4z)=(3x-5y)2
Cách 1:x2-y2-z2=0
=>x2=y2+z2
(5x-3y+4z)(5x-3y-4z)
=(5x-3y)2-16z2
=25x2-30xy+9y2-16z2(*)
Vì x2=y2+z2=>z2=x2-y2 nên (*)=25x2-30xy+9y2-16(x2-y2)=(3x-5y)2
Cách 2: cách này dễ hiểu hơn
x2-y2-z2=0
=>x2=y2+z2
(5x-3y+4z).(5x-3y-4z)=(3x-5y)2
<=>(5x-3y)2-16z2=(3x-5y)2
<=>(5x-3y)2-(3x-5y)2=16z2
<=>(8x-8y)(2x+2y)=16z2
<=>16(x2-y2)=16z2
<=>x2=y2+z2 (đúng với gt)
Ta có: (5x-3y+4z)(5x-3y-4z)=(5x-3y)^2-16z^2=25x^2-30xy+9y^2-16(x^2-y^2)=25x^2-30xy+9y^2-16x^2+16y^2
=9x^2-30xy+25y^2=(3x-5y)^2 (đpcm)
cho x2-y2-z2=0
chúng minh : (5x-3y+4z)(5x-3y-4z)=(3x-5y)2
Bài làm :
Ta có:
\(x^2-y^2-z^2=0\)
\(\Leftrightarrow16x^2-16y^2-16z^2=0\)
\(\Leftrightarrow25x^2-9x^2+9y^2-25y^2-16z^2+30xy-30xy=0\)
\(\Leftrightarrow\left[\left(25x^2-30xy+9y^2\right)-16z^2\right]-\left(9x^2-30xy+25y^2\right)=0\)
\(\Leftrightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!