cho tam giác ABC VUÔNG TẠI A đường cao AH . TÍNH BH, CH AH AC , biết AB=12cm, BC=13cm
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB: 12cm, AH:7,2 cm. tính AC BC BH CH
Áp dụng HTL:
\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)
Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABC vuông tại A ta có:
\(AB^2=BC\cdot BH\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)
Mà: \(BC=CH+BH\)
\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)
\(AC^2=BC\cdot CH\)
\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\)
Mà: \(AH\cdot BC=AB\cdot AC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)
cho tam giác abc vuông tại a đường cao ah biết ab=12cm , ah=9cm. Tính bh,bc,ch,ac
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH =25/13cm, AH=60/13cm.Tính AB,AC,BC,CH
Áp dụng hệ thức lượng vào tam giác vuông ABC vuông tại A, đường cao AH có:
\(AH^2=HB.HC\\ \Rightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\left(\dfrac{25}{13}\right)}=\dfrac{144}{13}\left(cm\right)\)
\(BC=BH+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)
\(AB^2=HB.BC\\ \Rightarrow AB=\sqrt{\dfrac{25}{13}.13}=5\left(cm\right)\)
\(AC^2=HC.BC\\ \Rightarrow AC=\sqrt{\dfrac{144}{13}.13}=12\left(cm\right)\)
Cho tam giác ABC Vuông tại A có AH là đường cao. Biết AB=5cm AC= 12cm a) Tính BC,CH b) Tính AH,BH
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC vuông tại A, đường cao AH. Biết AH=12cm , BC=25cm.
Tính BH;CH;AB;AC?
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH và AH =12cm, BC=25cm
tính BH,CH,AB,AC
Đặt BH=x; CH=y(x<y)
Theo đề, ta có:
x+y=25 và xy=12^2=144
=>x,y là các nghiệm của phương trình:
a^2-25a+144=0
=>a=9; a=16
=>BH=9cm; CH=16cm
AH=căn 9*16=12cm
AB=căn 9*25=15cm
AC=căn 16*25=20cm
Cho Tam giác ABC vuông tại A, đường cao AH.
a. Cho AH = 16cm, BH = 25 c. Tính AB,AC,BC,CH
b. Cho AB = 12cm, BH = 6cm. Tính AH,AC,BC,CH
c. Cho BH = 9cm, CH = 4cm. Tính Ah,AC,AB
\(a,\) Áp dụng HTL:
\(AH^2=BH\cdot HC\Rightarrow HC=\dfrac{AH^2}{BH}=10,24\left(cm\right)\\ BC=BH+CH=35,24\left(cm\right)\\ \left\{{}\begin{matrix}AB^2=HB\cdot BC=881\\AC^2=HC\cdot BC=360,8576\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{881}\left(cm\right)\\AC\approx19\left(cm\right)\end{matrix}\right.\)
\(b,\) Áp dụng HTL:
\(AB^2=BH\cdot BC\Rightarrow BC=\dfrac{AB^2}{BH}=24\left(cm\right)\\ HC=BC-BH=18\left(cm\right)\\ \left\{{}\begin{matrix}AH^2=BH\cdot HC=108\\AC^2=CH\cdot BC=432\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH=6\sqrt{3}\left(cm\right)\\AC=12\sqrt{3}\left(cm\right)\end{matrix}\right.\)
\(c,\) Áp dụng HTL:
\(BC=BH+HC=13\left(cm\right)\\ \left\{{}\begin{matrix}AB^2=BH\cdot BC=117\\AC^2=CH\cdot BC=52\\AH^2=BH\cdot CH=36\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=3\sqrt{13}\left(cm\right)\\AC=2\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)