Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Vũ
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2024 lúc 7:07

Do n lẻ \(\Rightarrow n=2k+1\)

Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)

Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1

\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n

Quang Phạm
Xem chi tiết
Quang Phạm
3 tháng 3 2017 lúc 21:42

chứng minh với mọi n thuộc N* và m chẵn thì m^2^n-1 chia hết 2^ (n+2)

kieu dinh hai
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
⚚ßé Só¡⁀ᶦᵈᵒᶫ
9 tháng 2 2022 lúc 9:31

Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn 
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ

Khách vãng lai đã xóa
Tran Khanh Chi
16 tháng 7 2022 lúc 9:29

 

Nếu n lẻ thì n có dạng n = 2k+1 với k \in \mathbb{N}.

Do đó n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k+1 = 2(k^3 + 6k^2 + 3k) + 1.

Suy ra n^3 lẻ.

Vậy với mọi số tự nhiên n, nếu n lẻ thì n^3 lẻ.

Ngô Minh Đạt
17 tháng 7 2022 lúc 22:24

Đặt n = 2k+1 (k ∈ N)

Khi này: n^3 = (2k+1)^3 

= (2k)^3 + 3*(2k)^2*1 + 3*2k*1^2 + 1^3

= 8k^3 + 12k^2 + 6k + 1

= 2 (4k^3 + 6k^2 + 3k) + 1 là số lẻ.

Vậy với mọi số tự nhiên n lẻ thì n^3 lẻ. 

Linh Nhi
Xem chi tiết
Lê Anh Tú
22 tháng 8 2017 lúc 21:53

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé

Ngọc Thiện Hồ
Xem chi tiết
Hâm cả mớ à
15 tháng 9 2016 lúc 19:22

\(n^3-n\)=   \(n\left(n^2-1\right)\)=  \(\left(n-1\right)n\left(n+1\right)\)

Do (n-1)n(n+1) la h cua 3 so tự nhiên liên tiếp nên chia het cho 2 va 3

mà (2,3) =1 nen h chia het cho 6

Lại có n lẻ nên tích sẽ có 1 số chia hết cho 4

=> (n-1)n(n+1) chia hết cho 4*6 = 24

Hay \(n^3-1\)chia hết cho 24 với mọi số tự nhiên n lẻ

Đúng thì

Trịnh Quỳnh Nhi
9 tháng 11 2017 lúc 22:56

Theo mình thì khi ta có a chia hết c, b chia hết cho c và (a,b)=1 thì ta mới có thể kết luận là ab chia hết cho c. 

Ví dụ: 12 chia hết cho 4, 12 chia hết cho 6 nhưng 12 không chia hết cho 24. 

Mình chỉ biết như thế còn không biết cách giải mong các bạn giúp đỡ.

Slendrina
Xem chi tiết
Isolde Moria
15 tháng 9 2016 lúc 19:20

Vì n lẻ 

=> n = 2k + 1 ( với k laf số tự nhiên )

\(\Rightarrow n^3-n=\left(2k+1\right)^3-\left(2k+1\right)\)

\(\Rightarrow n^3-n=\left(2k+1\right)\left[\left(2k+1\right)^2-1\right]\)

\(\Rightarrow n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)

Vì 2k ; 2k + 1 ; 2k + 2 là 3 số tự nhiên liên tiếp .

\(\Rightarrow\left(2k+1\right)\left(2k+2\right)2k\) chia hết cho 3

\(\Rightarrow n^3-n⋮3\)

Mặt khác : \(n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)

\(\Rightarrow n^3-n=\left(2k+1\right)2\left(k+1\right)2k\)

\(\Rightarrow n^3-n=\left(2k+1\right)4\left(k+1\right)k\) 

Xét thấy k và k+1 là 2 số tự nhiên liên tiếp .

=> k(k+1) chia hết cho 2

\(\Rightarrow\left(2k+1\right)4\left(k+1\right)k⋮8\)

\(\Rightarrow n^3-n⋮8\) 

Mà (3;8) = 1

=> n- n chia hết cho 24 ( đpcm )

Trần Minh Hoàng
27 tháng 6 2019 lúc 9:46

Ta có: n3 - n = (n - 1)n(n + 1)

Trong 3 số tự nhiên liên tiếp có đúng một số chia hết cho 3 \(\Rightarrow\) (n - 1)n(n + 1) \(⋮\) 3 (1)

Vì n lẻ nên n - 1 và n + 1 chẵn. Trong hai số chẵn liên tiếp có đúng một số chia hết cho 4 \(\Rightarrow\) \(\left[{}\begin{matrix}n-1⋮4\\n+1⋮4\end{matrix}\right.\) \(\Rightarrow\) (n - 1)n(n + 1) \(⋮\) 8 (2)

Từ (1) và (2) suy ra (n - 1)n(n + 1) \(⋮\) 3; 8

\(\Rightarrow n^3-n⋮24\)

Tran Thanh Huyen
Xem chi tiết
Ghost Rider
23 tháng 5 2015 lúc 21:12

1/           n3+n+2=(n+1)(n2-n+2)

Xet chẵn lẻ của n  => chia hết cho 2 => hợp số

online math oi, chọn câu trả lời này đi

super xity
Xem chi tiết