\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
a) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
b) \(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
a) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
\(=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(3\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=21-2\sqrt{21}+2\sqrt{21}\)
\(=21\)
b) \(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}\cdot1+1^2}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{2}\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}\)
\(=\dfrac{1}{\sqrt{2}}\)
Thực hiện phép tính:
1/\(\left(3\sqrt{5}-2\sqrt{3}\right)\sqrt{5}+\sqrt{60}\)
2/\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
2\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(14-\sqrt{84}+7-\sqrt{84}\)
= 21
Câu 1 = 15
Câu 2 = 21
Nha!
K VÀ KB NHA !
1. \(\left(3\sqrt{5}-2\sqrt{3}\right)5+\sqrt{60}\)
= \(15-\sqrt{60}+\sqrt{60}\)
= 15
Rút gọn các biểu thức sau :
a) \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2}\) - \(\sqrt{54}\)
b) \(\dfrac{a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\) - a\(\sqrt{\dfrac{1}{a}}\)
c) ( \(\sqrt{28}\) - 2\(\sqrt{3}\) +7) \(\sqrt{7}\) +\(\sqrt{84}\)
a: \(=3\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)-3\sqrt{6}\)
=3căn 6-6-3căn 6=-6
b: \(=\dfrac{a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\sqrt{a}\)
\(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
Thực hiện phép tính
a) \(\left(3-\sqrt{3}\right)\left(-2\sqrt{3}\right)+\left(3\sqrt{3}+1\right)^2\)
b) \(\left(3\sqrt{5}-2\sqrt{3}\right).\sqrt{5}+\sqrt{60}\)
c) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right).\sqrt{7}+\sqrt{84}\)
- Bạn nào giúp mình với, mình cảm ơn nhìu ...!
Rút gọn
a)\(\frac{1}{2}\sqrt{12}+3\sqrt{\frac{1}{2}}+\)\(2\sqrt{3}\)
b)\(\sqrt{45}-2\sqrt{18}+\sqrt{20}-3\sqrt{72}\)
c)\(\left(3+\sqrt{3}\right).2\sqrt{3}-\left(2\sqrt{3}-4\right)^2\)
d)\(\left(\sqrt{7}-\sqrt{28}+2\sqrt{3}\right).\sqrt{7}+\sqrt{84}\)
e)\(\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{96}\)
* Thực hiện phép tính.
a.\(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b.\(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c.\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right).\dfrac{1}{2-\sqrt{5}}\)
d.\(\sqrt{\left(2-\sqrt{5}\right)^2-\sqrt{5}}\)
a) \(\text{2}\sqrt{\text{18}}-9\sqrt{50}+3\sqrt{8}\)
= \(\text{6}\sqrt{\text{2}}-45\sqrt{2}+6\sqrt{2}\)
= \(-33\sqrt{2}\)
b) = \(7-2.\sqrt{7}.\sqrt{3}+3+7.2\sqrt{21}\)
= \(10-2\sqrt{21}+14\sqrt{21}\)
= \(10+12\sqrt{21}\)
a) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
b) \(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
c) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
d) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
rút gọn
a.\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
b.\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5.\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
c.\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
d.\(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
a, \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
= \(2\sqrt{3}-10\sqrt{3}-\dfrac{\sqrt{3}\cdot\sqrt{11}}{\sqrt{11}}+5\sqrt{\dfrac{4}{3}}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\sqrt{\dfrac{12}{3^2}}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\dfrac{2\sqrt{3}}{3}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}\)
= \(-9\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{-27\sqrt{3}}{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{-17\sqrt{3}}{3}\)
b, \(\sqrt{150}+\sqrt{1,6}\cdot\sqrt{60}+4.5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
= \(5\sqrt{6}+\dfrac{2\sqrt{10}}{5}\cdot2\sqrt{15}+4,5\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+4,5\sqrt{\dfrac{24}{3^2}}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+4,5\cdot\dfrac{2\sqrt{6}}{3}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}=11\sqrt{6}\)
c, \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)
= \(\left(3\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
= \(21-2\sqrt{21}+2\sqrt{21}=21\)
d, \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{30}+5-2\sqrt{30}=11\)
Rút gọn các biểu thức sau:
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
giúp nha
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
= \(-\sqrt{5}+15\sqrt{2}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
= \(2.7-2\sqrt{21}+7+2\sqrt{21}=14+7=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{6}.\sqrt{5}+5-2\sqrt{30}\)
= \(11+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
= \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
= \(4-4\sqrt{2}-12\sqrt{2}+64\sqrt{2}=4+48\sqrt{2}\)
Bài này dễ ẹc ( đâu có khó đâu :)) )
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=\sqrt{2^2.5}-\sqrt{3^2.5}+3\sqrt{3^2.2}+\sqrt{6^2.2}\)
\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=\left(2-3\right)\sqrt{5}+\left(9+6\right)\sqrt{2}\)
\(=15\sqrt{2}-\sqrt{5}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
\(=\sqrt{2^2.7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+\sqrt{2^2.21}\)
\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)
\(=14+7+\left(2-2\right)\sqrt{21}=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
\(=6+2\sqrt{30}+5-\sqrt{2^2.30}\)
\(=6+5+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{2^2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{10^2.2}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)
Hok tốt
\(a.\sqrt{20}-\sqrt{45}+3\sqrt{18}-\sqrt{72}\)
= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}-6\sqrt{2}=3\sqrt{2}-\sqrt{5}\)
b. \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(\sqrt{196}-2\sqrt{21}+7+\sqrt{84}\)
= \(14-2\sqrt{21}+7+2\sqrt{21}=21\)
c. \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{30}+5-\sqrt{120}=6+2\sqrt{30}+5-2\sqrt{30}=11\)
d. \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
= \(4-\dfrac{8}{\sqrt{2}}-\dfrac{3\sqrt{2}}{4}+\dfrac{32\sqrt{200}}{5}\)
= \(4-\dfrac{8}{\sqrt{2}}-\dfrac{3}{2\sqrt{2}}+\dfrac{32.5.\sqrt{8}}{5}=4-\dfrac{16}{2\sqrt{2}}+32\sqrt{8}\)
= \(\dfrac{8\sqrt{2}-16+256}{2\sqrt{2}}=\dfrac{240+8\sqrt{2}}{2\sqrt{2}}=60\sqrt{2}+4\)