Thực hiện phép tính :
a) \(\left(-7\right).8\)
b) \(6.\left(-4\right)\)
c) \(\left(-12\right).12\)
d) \(450.\left(-2\right)\)
Thực hiện các phép tính sau:
a) \(4 + \left( { - 7} \right)\)
b) \(\left( { - 5} \right) + 12\)
c) \(\left( { - 25} \right) + 72\)
d) \(49 + \left( { - 51} \right)\)
a) \(4 + \left( { - 7} \right) = - \left( {7 - 4} \right) = - 3\)( Vì 7>4)
b) \(\left( { - 5} \right) + 12 = 12 - 5 = 7\) (Vì 12>5)
c) \(\left( { - 25} \right) + 72 = 72 - 25 = 47\) (Vì 72>25)
d) \(49 + \left( { - 51} \right) = - \left( {51 - 49} \right) = - 2\) (Vì 51>49)
Thực hiện các phép tính sau:
a) \(6 - 8\)
b) \(3 - \left( { - 9} \right)\)
c) \(\left( { - 5} \right) - 10\)
d) \(0 - 7\)
e) \(4 - 0\)
g) \(\left( { - 2} \right) - \left( { - 10} \right)\)
a) \(6 - 8 = 6 + \left( { - 8} \right) = - \left( {8 - 6} \right) = - 2\)
b) \(3 - \left( { - 9} \right) = 3 + 9 = 12\)
c) \(\left( { - 5} \right) - 10 = \left( { - 5} \right) + \left( { - 10} \right)\)\( = - \left( {5 + 10} \right) = - 15\)
d) \(0 - 7 = 0 + \left( { - 7} \right) = - 7\)
e) \(4 - 0 = 4 + 0 = 4\) (vì số đối của 0 là 0)
g) \(\left( { - 2} \right) - \left( { - 10} \right) = \left( { - 2} \right) + 10\)\( = 10 - 2 = 8\).
Thực hiện các phép tính sau:
a) \(6 - 9\)
b) \(23 - \left( { - 12} \right)\)
c) \(\left( { - 35} \right) - \left( { - 60} \right)\)
d) \(\left( { - 47} \right) - 53\)
e) \(\left( { - 43} \right) - \left( { - 43} \right)\).
a) Số trừ là \(9\) có số đối là \(\left( { - 9} \right)\) nên ta có:
\(6 - 9 = 6 + \left( { - 9} \right) = - \left( {9 - 6} \right) = - 3\)
b) Số trừ là \(\left( { - 12} \right)\) có số đối là \(12\) nên ta có:
\(23 - \left( { - 12} \right) = 23 + 12 = 35\)
c) Số trừ là \(\left( { - 60} \right)\) có số đối là \(60\) nên ta có:
\(\begin{array}{l}\left( { - 35} \right) - \left( { - 60} \right) = \left( { - 35} \right) + 60\\ = 60 - 35 = 25\end{array}\)
d) Số trừ là \(53\) có số đối là \(\left( { - 53} \right)\) nên ta có:
\(\begin{array}{l}\left( { - 47} \right) - 53 = \left( { - 47} \right) + \left( { - 53} \right)\\ = - \left( {47 + 53} \right) = - 100\end{array}\)
e) Số trừ là \(\left( { - 43} \right)\) có số đối là 43 nên ta có:
\(\left( { - 43} \right) - \left( { - 43} \right) = \left( { - 43} \right) + 43 = 0\).
Thực hiện phép tính( tính nhanh nếu có thể):
a/ 26 + 173 + 74 + 27
b/ 75.37 + 89.46 + 75.52 - 89.21
c/ \(2^7:2^2+5^4:5^3.2^4-3.2^5\)
d/ \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
a) \(26+173+74+27\)
\(=\left(26+74\right)+\left(173+27\right)\)
\(=100+200\)
\(=300\)
b) \(75\cdot37+89\cdot46+75\cdot52-89\cdot21\)
\(=75\cdot\left(37+52\right)+89\cdot\left(46-21\right)\)
\(=75\cdot89+89\cdot25\)
\(=89\cdot\left(75+25\right)\)
\(=89\cdot100\)
\(=8900\)
c) \(2^7:2^2+5^4:5^3\cdot2^4-3\cdot2^5\)
\(=2^{7-2}+5^{4-3}\cdot2^4-3\cdot2^5\)
\(=2^5+5\cdot2^4-3\cdot2^5\)
\(=2^4\cdot\left(2+5-3\cdot2\right)\)
\(=2^4\cdot\left(7-6\right)\)
\(=2^4\)
\(=16\)
d) \(100:\left\{250:\left[450-\left(4\cdot5^3-2^2\cdot25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4\cdot5^3-4\cdot5^2\right)\right]\right\}\)
\(=100:\left[250:\left(450-4\cdot5^2\cdot4\right)\right]\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
thực hiện phép tính : ( tính nhanh nếu có thể )
a) \(\left(\frac{11}{12}:\frac{33}{16}\right).\frac{3}{5}+\frac{7}{23}.\left[\left(\frac{-8}{6}+\frac{-45}{18}\right)\right]\)
b) \(\left(\frac{-2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}\)
c) \(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)\)
d) \(\frac{-3}{4}.\frac{12}{-5}.\frac{-25}{6}+\left(-2\right).\frac{-38}{21}.\frac{-7}{4}.\frac{-3}{8}\)
Thực hiện các phép tính sau:
a) \(\left( { - 5} \right).4\)
b) \(6.\left( { - 7} \right)\)
c) \(\left( { - 14} \right).20\)
d) \(51.\left( { - 24} \right)\)
a) \(\left( { - 5} \right).4 = - \left( {5.4} \right) = - 20\)
b) \(6.\left( { - 7} \right) = - \left( {6.7} \right) = - 42\)
c) \(\left( { - 14} \right).20 = - \left( {14.20} \right) = - 280\)
d) \(51.\left( { - 24} \right) = - \left( {51.24} \right) = - 1224\)
\(\text{Thực hiện các phép tính sau một cách hợp lý:}\)
\(a\)) \(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)\)
\(b\)) \(1.2.3...9-1.2.3...8-1.2.3...7.8^2\)
\(c\)) \(\dfrac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(d\)) \(1152-\left(374+1152\right)+\left(-65+374\right)\)
\(e\)) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)
thực hiện phép tính
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\dfrac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}-\dfrac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\)
\(=\dfrac{2^{12}.3^4.2}{2^{12}.3^5.4}-\dfrac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)
\(=\dfrac{1}{6}-\dfrac{-10}{3}\)
\(=\dfrac{7}{2}\)