Tìm ƯCLN ( 135 : 195 ; 275 ) giải bằng cách đổi ra thừa số nguyên tố
Câu 5. Tìm ƯCLN(60 ; 90; 135)
Trả lời:
60 = …………
90 = ………….
135 = ……………
ƯCLN(60; 90; 135) = ……………………
Ta có:
60 = 2^2 .3.5; 90 = 2.3^2.5; 135 = 3^3 .5
<-> ƯCLN(60, 90, 135) = 3.5 = 15.
ƯC(60, 90, 135) = Ư(15) = {1, 3, 5, 15}
--thoT-T--
\(60=2^2.3.5\)
\(90=2.3^2.5\)
\(135=3^3.5\)
\(\Rightarrow ƯCLN(60;90;135)=3.5=15\)
Tìm ƯCLN(24, 60); ƯCLN(14, 33); ƯCLN(90, 135, 270).
+) 24 = 23.3
60 = 22.3.5
Ta thấy 2 và 3 là các thừa số nguyên tố chung. Số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1
=> ƯCLN(24, 60) = 22. 3 = 12.
+) 14 = 2.7
33 = 3.11
=> ƯCLN(14, 33) = 1
+) 90 = 2.32.5
135 = 33.5
270 = 2.33.5
Ta thấy 3 và 5 là các thừa số nguyên tố chung. Số mũ nhỏ nhất của 3 là 2, số mũ nhỏ nhất của 5 là 1
=> ƯCLN(90, 135, 270) = 32. 5 = 45.
tìm ƯCLN của 195 và 117
ƯCLN ( 195;117 ) = 39
Mk chắc 100%. Tk cho mk nhé
195=5.13.3
117=32.13
ƯCLN{195;117}=13.3=39
9 TÌM: ƯCLN ( 84 ; 105 ) ƯCLN ( 16 ; 24)
ƯCLN ( 40 ;144) ƯCLN (56; 140)
ƯCLN (52;42;48) ƯCLN (135 ;225;405)
ƯCLN (128;190 ;320)
GIUP MINH VOI DANG GAP
ƯCLN(84;105)=21
ƯCLN(16;24)=8
ƯCLN(40;144)=8
ƯCLN(52;42;48)=2
ƯCLN(135;225;405)=45
ƯCLN(128;190;320)=2
a: 84=2^2*3*7; 105=3*5*7
=>ƯCLN(84;105)=3*7=21
b: 16=2^4; 24=2^3*3
=>ƯCLN(16;24)=2^3=8
c: 40=2^3*5; 144=2^3*3^2
=>ƯCLN(40;144)=2^3=8
d: 56=2^3*7; 140=2^2*5*7
=>ƯCLN(56;140)=2^2*7=28
e: 52=2^2*13; 42=2*3*7; 48=2^4*3
=>ƯCLN(52;42;48)=2
f: 135=5*3^3; 225=5^2*3^2; 405=3^4*5
=>ƯCLN(135;225;405)=5*3^2=5*9=45
g: 128=2^7; 190=2*5*19; 320=2^6*5
=>ƯCLN(128;190;320)=2
tìm a biết 108/135 = a/195
Ta có :
\(\frac{108}{135}=\frac{4}{5}\)
\(\frac{4}{5}=\frac{156}{195}\)
Vậy :
a=156
108/135 = 4/5
Vậy a/195 = 4/5
a/195 = 156/195
Suy ra a = 156
Tìm a biết 108/135=a/195
to cung co bai nhu vay nhung khong biet lam
Tìm ƯCLN của :
a) 30 , 45 , 135
a) 30 = 2 . 3 . 5
45 = 32 . 5
135 = 33 . 5
Vậy ƯCLN (30 ; 45 ; 135) = 3 . 5 = 15
Tìm ƯCLN rồi tìm các ước chung của: 60, 90, 135
60 = 22 .3.5; 90 = 2.32.5; 135 = 33 .5
⇒ ƯCLN(60, 90, 135) = 3.5 = 15.
ƯC(60, 90, 135) = Ư(15) = {1, 3, 5, 15}
d) Tìm ƯCLN của: 54; 135 và 162
Ta có: \(54=2.3^3\)
\(135=3^3.5\)
\(162=2.3^4\)
\(ƯCLN\left(54;135;162\right)=3^3=27\)
d) 54 = 2.3³
135 = 3³.5
162 = 2.3⁴
ƯCLN(54; 135; 162) = 3³ = 27