Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Đức
Xem chi tiết
nguyễn minh khang
Xem chi tiết
thanh ngọc
6 tháng 8 2016 lúc 12:06

A B C E D 1 2 trên cạnh AB lấy E sao cho AE=AC

xét 2 tam giác AED và ACD có:

AC=AE ( gt)

\(\widehat{A_1}=\widehat{A_2}\)  ( gt)

AD chung

\(\Rightarrow\DeltaÂED=\Delta ACD\) ( C.G.C)

nên DE=DC ( 2 cạnh tương ứng )

trong tam giác DEB , ta có:

BE>BD-DE=BD-DC

=> AB-AC>BD-DC

BHQV
Xem chi tiết
lilith.
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 19:29

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔEBM và ΔEDC có

EB=ED

\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)

EM=EC

Do đó: ΔEBM=ΔEDC

=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC

Ta có: \(\widehat{EBM}=\widehat{EDC}\)

\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)

=>A,B,M thẳng hàng

Ta có: AB+BM=AM

AD+DC=AC

mà AB=AD và BM=DC

nên AM=AC

=>A nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của MC(2)

Từ (1) và (2) suy ra AE là đường trung trực của MC

=>AE\(\perp\)MC

mà AE\(\perp\)BD

nên BD//MC

lilith.
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 20:26

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔBEM và ΔDEC có

EB=ED
\(\widehat{BEM}=\widehat{DEC}\)

EM=EC

Do đó: ΔBEM=ΔDEC

=>\(\widehat{EBM}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

nên \(\widehat{ABE}+\widehat{MBE}=180^0\)

=>A,B,M thẳng hàng

Ta có: ΔEBM=ΔEDC

=>BM=DC

Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)

nên BD//MC

lilith.
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 22:05

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của \(\widehat{BAC}\)

b: Xét ΔCBD có CB=CD

nên ΔCBD cân tại C

Ta có: ΔCBD cân tại C

mà CN là đường phân giác

nên CN\(\perp\)BD

c: Ta có: \(\widehat{ADC}+\widehat{CDB}=180^0\)(hai góc kề bù)

\(\widehat{BCE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{CDB}=\widehat{ACB}\left(=\widehat{ABC}\right)\)

nên \(\widehat{ADC}=\widehat{BCE}\)

ΔCBD cân tại C

mà CN là đường cao

nên N là trung điểm của BD

=>BD=2BN

Xét ΔADC và ΔECB có

AD=EC

\(\widehat{ADC}=\widehat{ECB}\)

DC=CB

Do đó: ΔADC=ΔECB

=>EB=AC

=>EB-AC=AC-CE=AB-AD=BD=2BN

Trần Nguyễn Thái Ngọc
Xem chi tiết
Nguyễn Văn Du
7 tháng 12 2016 lúc 22:42

?????????????????????????????????????????????????????

huỳnh lê huyền trang
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
Tăng Linh Đạt
Xem chi tiết
Lưu Đức Mạnh
29 tháng 5 2017 lúc 20:13

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.