Cho tam giác ABC vuông tại A, AB<AC, có AH là đường cao(H thuộc BC). Chứng minh rằng:
a) Tam giác HBA đồng dạng tam giác ABC và HB*AC= HA*AB
b) HA^2=hb*HC
c) Gọi M là trung điểm AH. Trên tia đối tia AC lấy N sao cho AN=1/2AC. Chứng minh: tam giác BHM đồng dạng tam giác BAN
d) Góc BMN=90 độ
1. Cho tam giác ABC vuông tại A (AC>AB) đường cao AH (H thuộc BC) trên tia HC lấy D sao cho HD = HA . đường vuông góc với BC tại D cắt AC tại E, tia AM cắt BC tại G .Chứng minh GB/BC = HD/ AH+HC (/ là phân số).
2. Cho hình vuông ABCD có cạnh bằng a. Gọi E, F lần lượt là trung điểm của các cạnh AB, BC, M là giao điểm CE và DF. Tính diện tích tam giác MDC theo a
3. Hình thang ABCD có AB//CD, đường cao bằng 12m, AC vuông góc BD, BD = 15m.
a) Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Chứng minh BD2 = DE*DH. Từ đó tính DE.
b. Tính SABCD?
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC vuông tại A( AC > AB), đường cao AH( H thuộc BC). Trên tia đối của tia HB lấy điểm D sao cho HD=HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E.
1. Chứng minh CD.CB=CA.CE
2. tính số đo góc BEC
3. gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G.Chứng minh; GB/BC=HD/AH+HC
Cho tam giác ABC nhọn AB<AC có 2 đường chéo BD và CE cắt nhau tại H
a,Chứng minh tam giác ABD và tam giác ACE đồng dạng
b,Chứng minh HD*HB=HE*HC
c,AH cắt BC tại F. Kẻ FI vuông góc với AC tại I. Chứng minh: IF/IC=FA/FC
đ, Trên tia đối của tia AF lấy N sao cho AN = AF. Gọi M là trung điểm của IC. Chứng minh NI vuông góc với FM
Bài 6. Cho ABC vuông tại A (AB < AC) có đường cao AH.
a) Chứng minh và .
b) Kẻ AD là phân giác của góc HAC (D thuộc HC ) . Biết AC = 16 cm , CB =20 cm .
Tính CH , AH và DC .
c) Trên tia đối của tia BC lấy điểm E sao cho BE = BD . Chứng minh HB.HC = HD.HE .
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Chứng minh AH2 = HB . HC
c) Tia phân giác của góc AHC cắt AC tại D. Chứng minh HB/HC = AD^2/DC^2