cho a b c là các số thực dương. cmr a^3/(a^2+b^2)+b^3/(b^2+1)+1/(a^2+1)>=(a+b+1)/2
cmr a^3+b^3/ab(a^2+b^2)+b^3+c^3/bc(b^2+c^2)+c^3+a^1/ca(c^2+a^2)>=1/a+1/b+1/c với a,b,c là các số thực dương
Cho các số thực dương a, b, c thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Cmr: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cho a b c là các số thực dương cmr a^2/5a^2+(b+c)^2+b^2/ 5b^2+(c+a)^2+c^2/5c^2+(a+b)^2 < hoặc = 1/3
Cho a,b, c là các số thực dương thỏa mãn a+b+c=3. CMR:
\(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^2+c^2+2}+\dfrac{1}{c^2+a^2+2}\le\dfrac{3}{4}\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*
Cho a,b, c là các số thực dương thỏa mãn a+b+c=3. CMR :
\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy - Schwarz ta có :
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+a^2c^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Ta cần chứng minh :
\(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) luôn đúng
Chúc bạn học tốt !!!
hoang viet nhat copy nhớ ghi nguồn nha bạn:))Link
Mà quan trọng là copy mà bạn có hiểu không là chuyện khác:) Bạn hãy giải thích tại sao:
\(\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+^2+c^2}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. CMR: \(\dfrac{1}{2+a^2b}+\dfrac{1}{2+b^2c}+\dfrac{1}{2+c^2a}\) ≥ 1
Cho a;b;c là các số thực dương thỏa : a+b+c=3 . CMR :
\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
BĐT cần chứng minh tương đương với :
\(\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ac}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\)( luôn đúng )
nguồn : loga
Bất đẳng thức cần chứng minh tương đương: \(\Sigma\frac{2}{a^2+b^2+2}\le\frac{3}{2}\)
\(\Leftrightarrow3-\Sigma\frac{2}{a^2+b^2+2}\ge\frac{3}{2}\Leftrightarrow\Sigma\left(1-\frac{2}{a^2+b^2+2}\right)\ge\frac{3}{2}\)
\(\Leftrightarrow\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)(*)
Xét vế trái của (*), ta có: \(\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)(Theo BĐT Bunyakovsky dạng phân thức)
Đến đây, ta cần chỉ ra rằng \(\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{2\left(a^2+b^2+c^2\right)+2\left(\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\right)}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a^2+b^2+c^2+\Sigma\text{}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)
\(\Leftrightarrow2\text{}\text{}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\left(a^2+b^2+c^2\right)+9\)\(\Leftrightarrow\text{}\text{}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(**)
Theo BĐT Cauchy-Schwarz cho 2 bộ số \(\left(a;b\right)\)và \(\left(c;b\right)\), ta có:\(\left(a^2+b^2\right)\left(c^2+b^2\right)\ge\left(ac+b^2\right)^2\) \(\Rightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)(1)
Tương tự, ta có: \(\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge ab+c^2\)(2); \(\sqrt{\left(c^2+a^2\right)\left(a^2+b^2\right)}\ge bc+a^2\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\text{}\text{}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)
\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(Do đó (**) đúng)
Đẳng thức xảy ra khi a = b = c = 1.
Với \(s=\frac{\left(b+c\right)}{2},t=\frac{\left(b-c\right)}{2}\)
Bài này giả sử a = max {a,b,c} thì \(a\ge s\)
Bất đẳng thức tương đương với: \(\frac{f\left(a,s+t,s-t\right)}{\left(a^2+b^2+2\right)\left(b^2+c^2+2\right)\left(c^2+a^2+2\right)}\ge0\)
Ta có:
(Vô TKHĐ xem ảnh Latex nhá)
Cho các số thực dương a,b,c thỏa mãn abc =1 .CMR
\(\dfrac{3+a}{\left(1+a\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Bài này đã có ở đây: