Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thúy Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 21:51

a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

Do đó;ΔAEH\(\sim\)ΔADC

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)

Do đó:ΔHFB\(\sim\)ΔHEC

Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

Đinh Thị Diệu Chúc
Xem chi tiết
Trần Băng Băng
6 tháng 5 2017 lúc 23:06

A B C E D H F

a) Xét \(\Delta\)AFH và \(\Delta\)ADB có:

\(\widehat{BAD}\) chung

\(\widehat{AFH} = \widehat{ADB}\) (=90o)

=> \(\Delta\)AFH đồng dạng \(\Delta\)ADB (g-g)

b) Xét \(\Delta\)FHB và \(\Delta\)EHC có:

\(\widehat{HFB} = \widehat{HEC}\) (=90o)

\(\widehat{FHB} = \widehat{EHC}\) ( đối đỉnh)

=> \(\Delta\)FHB đồng dạng \(\Delta\)EHC (g-g)

=> \(\dfrac{HB}{HC}=\dfrac{HF}{HE}\) => HB.HE = HF.HC =>đpcm

c) Từ câu b ta có: \(\dfrac{HB}{HC}=\dfrac{HF}{HE}\) => \(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)

Xét \(\Delta\)FHE và \(\Delta\)BHC có:

\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\) (chứng minh trên)

\(\widehat{FHE} = \widehat{CHB}\) ( đối đỉnh)

=>\(\Delta\)FHE đồng dạng \(\Delta\)BHC (g-g)

=> \(\widehat{BEF} = \widehat{BCF}\) => đpcm

Tran Kim
Xem chi tiết
8/5 - 09 - Huỳnh Tấn Mạn...
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 9:19

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

Xét ΔFBH vuông tại F và ΔFCA vuông tại F có

góc FBH=góc FCA

=>ΔFBH đồng dạng vơi ΔFCA

=>FH/FA=BH/AC

=>FH*AC=BH*FA

b: Xét tứ giác BHCK có

I là trung điểm chung của BC và HK

=>BHCK là hình bình hành

=>CK//BH

=>CK vuông góc AC

=>AK là đường kính của (O)

Xet ΔAKC vuông tại C và ΔAHF vuông tại F có

góc AKC=góc AHF(=góc ABD)

=>ΔAKC đồng dạng với ΔAHF

hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 23:18

a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔAEH\(\sim\)ΔBDH(g-g)

joss nguyễn
Xem chi tiết
Hue Pham
Xem chi tiết
Trần Hữu Lộc
Xem chi tiết
Trần Việt Linh
23 tháng 7 2016 lúc 22:32

Bạn tự vẽ hình nha

a) Xét \(\Delta\)ABC có:BI,CK là hai đường cao 

Mà BI cắt CK tại H(gt)

=> H là trực tâm \(\Delta\)ABC

=>AH cũng là đường cao thứ 3 của \(\Delta\)ABC

      Xét \(\Delta\)ABI và \(\Delta\)ACK có:

              ^AIB=^AKC =90(gt)

                ^A: góc chung

=> \(\Delta\)ABI ~\(\Delta\)ACK(g.g)

b) xét \(\Delta\)ADC và \(\Delta\)AID có:

           ^ADC=^AID=90(gt)

            ^A:góc chung

=> \(\Delta\)ADC~\(\Delta\)AID(g.g)

=>\(\frac{AD}{AI}=\frac{AC}{AD}\)

=> AD^2 =AC*AI

 

mai thủy
Xem chi tiết