Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2017 lúc 12:18

HS tự chứng minh.

Phạm Trang
Xem chi tiết
Diep tran
11 tháng 2 2018 lúc 18:39

A=\(x^2+6x+9+1\)

=\(\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x

=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x

Vậy A luôn luôn dương với mọi x

B=4\(x^2-4x+1+2\)

=\(\left(2x-1\right)^2+2\)

Vì\(\left(2x-1\right)^2\ge0\forall\) x

=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)

Vậy B luôn luôn dương với x thuộc R

Nhã Doanh
11 tháng 2 2018 lúc 18:43

\(A=x\left(x-6\right)+10\)

\(\Leftrightarrow A=x^2-6+10\)

\(\Leftrightarrow A=x^2+4\)

Ta có: \(x^2\ge0\) với mọi x thuộc R

\(\Rightarrow x^2+4\ge4\) với mọi x thuộc R

Do đó A luôn dương với mọi x thuộc R

Phạm Mèo Mun
Xem chi tiết
Lê Tài Bảo Châu
5 tháng 2 2020 lúc 8:33

a)\(\frac{-1}{4x+2}< 0\)

\(\Leftrightarrow4x+2>0\)

\(\Leftrightarrow4x>-2\)

\(\Leftrightarrow x>\frac{-1}{2}\)

Vậy ...

b)\(\frac{-x^2-2x-3}{x^2+1}\)

Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)

Vì \(-\left(x+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)

Lại có \(x^2\ge0;\forall x\)

\(\Rightarrow x^2+1\ge1>0;\forall x\)

\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)

Khách vãng lai đã xóa
tuan
Xem chi tiết
phương
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 16:33

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

nguyễn thị hà uyên
Xem chi tiết
Trà My
25 tháng 9 2017 lúc 17:05

\(-4x^2-4x-2=-\left(4x^2+4x+2\right)=-\left[\left(2x\right)^2+2.2x.1+1+1\right]\)

\(=-\left[\left(2x+1\right)^2+1\right]=-\left(2x+1\right)^2-1\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow-\left(2x+1\right)^2\le0\Rightarrow-\left(2x+1\right)^2-1\le-1< 0\)

Vậy ta có đpcm.

Hàn Vũ Nhi
Xem chi tiết
headsot96
13 tháng 7 2019 lúc 17:54

\(-4x^2-4x-2=-\left(4x^2+4x+2\right)=-[\left(2x+1\right)^2+1]\)

Ta có \(\left(2x+1^2\right)\ge0\)\(=>-[\left(2x+1\right)^2+1]\le-1< 0\)

Vậy ... 

 Học tốt nha !

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2018 lúc 7:41

tai tui
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 21:06

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)