A=\(x^2+6x+9+1\)
=\(\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x
=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x
Vậy A luôn luôn dương với mọi x
B=4\(x^2-4x+1+2\)
=\(\left(2x-1\right)^2+2\)
Vì\(\left(2x-1\right)^2\ge0\forall\) x
=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)
Vậy B luôn luôn dương với x thuộc R
\(A=x\left(x-6\right)+10\)
\(\Leftrightarrow A=x^2-6+10\)
\(\Leftrightarrow A=x^2+4\)
Ta có: \(x^2\ge0\) với mọi x thuộc R
\(\Rightarrow x^2+4\ge4\) với mọi x thuộc R
Do đó A luôn dương với mọi x thuộc R