Cho a < b, hãy so sánh
a) 2a + 1 với 2b + 1
b) 2a +1 với 2b + 3
Cho a < b, hãy so sánh: 2a +1 với 2b + 3
1 < 3
⇒ 2b + 1 < 2b + 3 (Cộng hai vế với 2b)
Mà 2a + 1 < 2b + 1 (Theo ý a,)
⇒ 2a + 1 < 2b + 3 (Tính chất bắc cầu).
Vậy 2a + 1 < 2b + 3.
Cho a < b, hãy so sánh: 2a +1 với 2b + 1
a < b
⇒ 2a < 2b (nhân hai vế với 2 > 0, BĐT không đổi chiều)
⇒ 2a + 1 < 2b + 1 (cộng hai vế với 1).
Vậy 2a + 1 < 2b + 1.
a>b , hãy so sánh : 2a+3 với 2b+1
Vì a > b
=> 2a > 2b
Mà 3 > 1
=> 2a + 3 > 2b + 1
Vậy 2a + 3 > 2b + 1
Vì a>b suy ra 2a>2b (1)
mà 3 >1 (2)
nên từ (1) và (2) suy ra 2a+3 > 2b +1.
a>b => 2a>2b
Mà : 3>1
Hay : 2a+3>2b+1 (BĐT)
=> đpcm
cho a>b hãy so sánh : a)3a+5b và 3b+5 ;b)2a-3 và 2b-3 và 2b-4
a: a>b
=>3a>3b
=>3a+5>3b+5
b: a>b
=>2a>2b
=>2a-3>2b-3>2b-4
cho a>b hãy so sánh:
a) 2a+4 và 2b +4
b) 7-2a và 7-2b
c) 5a+3 và 5b-3
d) 2a+5 và 2b-1
a)
`a>b`
`<=>2a>2b`
`<=>2a+4>2b+4`
b)
`a>b`
`<=>-2a<-2b`
`<=>7-2a<7-2b`
c)
`a>b`
`<=>5a>5b`
`<=>5a+3>5b+3`
mà `5b-3<5b+3`
`=>5a+3>5b-3`
d)
`a>b`
`<=>2a>2b`
`<=>2a+5>2b+5`
mà `2b+5>2b-1`
`=>2a+b>2b-1`
cho a<b hãy so sánh;
2a và 2b 2a và a+b -a và -b
\(a< b\)
\(\Leftrightarrow2a< 2b\)
\(a< b\)
\(\Leftrightarrow a+a< b+a\)
\(\Leftrightarrow2a< a+b\)
\(a< b\)
\(\Leftrightarrow-1a>-1b\)
\(\Leftrightarrow-a>-b\)
Do \(a< b\) , nên :
Gọi \(a=2,b=3\)
+ \(2a\Leftrightarrow2.2=4\)
\(2b=2.3=6\)
Mà \(4< 6\) \(\Rightarrow2a< 2b\)
+ \(2a\Leftrightarrow2.2=4\)
\(a+b\Leftrightarrow2+3=5\)
Mà \(4< 5\) \(\Rightarrow2a< a+b\)
+ \(-a\Leftrightarrow-1.2=-2\)
\(-b\Leftrightarrow-1.3=-3\)
Mà \(-2>-3\) \(\Rightarrow-a>-b\)
Cho a < b, hãy so sánh: 2a và 2b; 2a và a + b; -a + b; -a và -b.
+ a < b ⇒ 2a < 2b (nhân cả hai vế với 2 > 0, BĐT không đổi chiều).
+ a < b ⇒ a + a < b + a (Cộng cả hai vế với a)
hay 2a < a + b.
+ a < b ⇒ (-1).a > (-1).b (Nhân cả hai vế với -1 < 0, BĐT đổi chiều).
hay –a > -b.
Cho \(a\le b\)hãy so sánh:
2a+1 và 2b-1
Tặng acc Online Math hơn 100 điểm hỏi đáp cho 50 thành viên đầu tiên !
Link nè : http://123link.vip/MlazJtj
Nhanh tay không hết ! Ưu đãi có hạn !
Buổi tối vui vẻ !
Chúc các bạn nhận acc thành công !
cho a<b , hãy so sánh-2a và -2b
Vì a<b
nên -2a > -2b ( nhân cả 2 vế với -2)
Có a<b nên -2a>-2b ( nhân cả 2 vế với -2 )