A=5^2/1.6+5^2/6.11+.....+5^2/26.31
cho A=5*2/1.6+5*2/6.11+...+5*2/26.31
chứng tỏ A>1
Tính giá trị của biểu thức: \(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
`A = ( 5^2 )/( 1*6)+(5^2)/(6*11)+.....+(5^2)/(26*31)`
`= 5*( 5/( 1*6)+ 5/(6*11)+.....+5/(26*31))`
`= 5*( 1 - 1/6 + 1/6 - 1/11 +....+1/26 - 1/31 )`
`= 5*( 1 - 1/31 )`
`= 5 * 30/31 = 150/31`
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
\(=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)
\(=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=5.\left(1-\dfrac{1}{31}\right)=5.\dfrac{30}{31}=\dfrac{150}{31}\)
Tính nhanh :
Q= 5^2/1.6 +5^2 /6.11 +5^2/11.6 +...+5^2/26.31
\(Q=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5\cdot\frac{30}{31}=\frac{150}{31}\)
Bạn nhân 2 lên rồi áp dụng \(\frac{5}{a\times\left(a+5\right)}=\frac{1}{a}-\frac{1}{a+5}\) thì sẽ còn lại là 2Q=1-1/31 =30/31 nên Q=30/62
A=\(\dfrac{5^{2}}{1.6}+\dfrac{5^{2}}{6.11}+...+\dfrac{5^{2}}{26.31}\)
Chứng tỏ A<5
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
\(A=5\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+..+\dfrac{5}{26.31}\right)\)
\(A=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(A=5\left(1-\dfrac{1}{31}\right)\)
\(A=5-\dfrac{1}{155}\)
\(A< 5\rightarrowđpcm\)
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+.......\dfrac{5^2}{26.31}\)
\(\Leftrightarrow A=5\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+.........+\dfrac{5}{26.31}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+..........+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{31}\right)\)
\(\Leftrightarrow A=5.\dfrac{30}{31}=\dfrac{150}{31}\)
A = 52 /1.6+52 /6.11+.....+52 /26.31
chứng tỏ A>1
A= 52 /1.6 + 52 /6.11 +...+ 52 /26.31
..
=> A= 5.( 5/ 1.6 + 5/ 6.11 +...+ 5 /26.31)
=> A= 5.( 1- 1/6 + 1/6 - 1/11 +...+ 1/26 - 1/31)
=> A= 5.( 1 - 1/31 )
=> A= 5. 30/31 = 150/31 > 1
=>A=52(1/1.6+1/6.11+...+1/26.31)
=>A=25/2(2/1.6+2/6.11+...+2/26.31)
=>A=25/2(1/1-1/6+1/6-1/11+....+1/26-1/31)
=>A=25/2(1+0+0+.....+1/31)
=>A=25/2X34/31
=>A=850/62
=>A=425/31
=>A>1(425>31=>A<1)
E=5^2/1.6+5^2/6.11+5^2/11.16+5^2/16.21+5^2/21.26+5^2/26.31
. là nhân
E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\) = 5*(1-\(\frac{1}{31}\) ) =5*\(\frac{30}{31}\) =\(\frac{150}{31}\)
tính C = 52/1.6 + 52/6.11 + ... + 52 /26.31
\(C=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
Tính tổng sau:
52/1.6 + 52/6.11 + 52/26.31
cái đè này mình đánh bị sai nha để mình đăng lại
312) Tính:
a) A = 3/2.5 + 3/5.8 + ... + 3/17.20
b) B = 5^2/1.6 + 5^2/6.11 + ... + 5^2/26.31
a, A = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{17.20}\)
A = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...\dfrac{1}{17}-\dfrac{1}{20}\)
A = \(\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{10}{20}-\dfrac{1}{20}=\dfrac{9}{20}\)
Lần sau nếu có bài dạng như thế này bạn hãy làm theo quy tắc sau nha: \(\dfrac{m}{b.\left(b+m\right)}=\dfrac{m}{b}-\dfrac{m}{b+m}\)
Tick cho mk vs. thank!!!
b, B = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
B = \(\dfrac{5^2}{5}.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)
B = \(5.\left(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
B = \(5.\left(\dfrac{1}{1}-\dfrac{1}{31}\right)\)
B = \(5.\dfrac{30}{31}=\dfrac{150}{31}\)
Tick cho mk nha! please đó!