Tìm các giá trị của a, b để đa thức \(x^3+ax^2+bx-2\) chia hết cho đa thức \(x^2+1\)
tìm các số nguyên a và b để đa thức x^3 +ax^2+bx +3 chia hết cho đa thức x^2 +2x-1
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
Tìm giá trị của a và b để đa thức x^3 + ax^2 + bx + 2 chia hết cho đa thức x^2 – x – 1.
Lời giải:
Ta có:
\(x^3+ax^2+bx+2=x(x^2-x-1)+x^2+x+ax^2+bx+2\)
\(=x(x^2-x-1)+(a+1)(x^2-x-1)+(a+1)(x+1)+x+bx+2\)
\(=(x+a+1)(x^2-x-1)+x(a+b+2)+(a+3)\)
Từ đây suy ra $x^3+ax^2+bx+2$ chia $x^2-x-1$ dư $x(a+b+2)+(a+3)$
Để phép chia là chia hết thì $x(a+b+2)+(a+3)=0$ với mọi $x$
Điều này xảy ra khi $a+b+2=0$ và $a+3=0$
Tức $a=-3; b=1$
cho đa thức : f(x)= ax^2+bx+c trong đó a;b;c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho 3 với mọi số nguyên của x . CMR : a,b,c chia hết cho 3
cho đa thức P(x)=ax2+bx +c trong đó a.b.c là các số nguyên .Biết rằng giá trị của đa thức chia hết cho 3 với mọi giá trị nghuyên của x
Chúng minh a,b,c đều chia hết cho 3
cho đa thức f(x)=ax^2+bx+c,trong đó a,b,c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho số nguyên tố p(p>2) với mọi giá trị nguyên của x . CMR : a,b,c đều chia hết cho p
Cho đa thức F(x) = ax^3+bx^2+cx+dvới a,b,c,d là các số nguyên.Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5.Chứng minh rằng a,b,c,d đều chia hết cho 5
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5
Bài 1: Cho đa thức P(x) = ax2+bx+c với a;b;c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 3 với mọi giá tri nguyên của x . Chứng minh rằng a;b;c đều chia hết cho 3
Bài 2:Tìm các cặp số nguyên sao cho x2+xy+y2=x2+y2
Cho đa thức A=x3 + 3x2 + 3x -2 và đa thức B= x+1
a) Thực hiện phép chia đa thức A cho đa thức B.
b) Tìm các giá trị nguyên của x để giá trị của đa thức A chia hết cho giá trị của đa thức B.
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
cho các đa thức Ax=x^4+4x^3+ax^2+x+bvaf Bx = x^2+x+1 thỏa mãn Ax chia hết ch Bx tính giá trị T + 3a^2-2b^2
Xác định các số a và b để đa thức ax^3+bx^2-11x+10 chia hết cho đa thức x^2+x-2
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$