Cho xy/x^2+y^2=5/8 rút gọn p=
x^2-2xy+y^2/x^2+2xy+y^2
Cho xy/x^2+y^=5/8. Rút gọn phân thức P= x^2-2xy+y^2/x^2+2xy+y^2
rút gọn
(x/xy-y^2+2x-y/xy-x^2) . x^2y-xy2/x^-2xy+y^2
Rút gọn biểu thức sau
(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2
2.Tính
a)(2+xy)^2
b) (5-3x)^2
c) (5-x^2)(5+x^2)
d) (5x-1)^3
e) (2x-y)(4x^2+2xy+y^2)
3.Rút gọn các biểu thức sau:
a) (a+b)^2 -(a-b)^2
b) (a+b)^3 -(a-b)^3-2b^3
c) (x+y+z)^2 -2(x+y+z)(x+y)+(x+y)^2
P/s:giúp mình giải nhé!!! giải theo 7 hằng đẳng thức đáng nhớ.
Bài 1:
a,(2+xy)^2=4+4xy+x^2y^2b,(5-3x)^2=25-30x+9x^2d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1a) rút gọn 2 đơn thức sau:
A=x^2+y^2-2xy+2x+2xy+3
B=2x^2+y^2-xy+2x+xy+1
b) tính A+B và A-B
b) \(A+B=x^2+y^2+2x+3+2x^2+y^2+2x+1=3x^2+2y^2+4x+4\)
\(A-B=x^2+y^2+2x+3-2x^2-y^2-2x-1=-x^2+2\)
a) Ta có: \(A=x^2+y^2-2xy+2x+2xy+3\)
\(=x^2+y^2+2x-\left(2xy-2xy\right)+3\)
\(=x^2+y^2+2x+3\)
Ta có: \(B=2x^2+y^2-xy+2x+xy+1\)
\(=2x^2+y^2+2x+\left(xy-xy\right)+1\)
\(=2x^2+y^2+2x+1\)
Rút gọn phân thức sau
(X^2+2xy+y^2)/(2x+xy-y^2)
rút gọn phân thức:
\(\dfrac{x^3-4x^2+4x}{x^2-4}\)
\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)
\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}=\dfrac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\dfrac{y\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)
Rút gọn và tính giá trị. 2xy(x^2y-1/2xy)-2x^2y(xy-1/2y)+1 với x = -2 ; y = 1/2
bn ơi cs fải đề thế này ko?
\(2xy\left(x^2y-\frac{1}{2}xy\right)-2x^2y\left(xy-\frac{1}{2}y\right)+1\)
\(=\) \(2x^3y^2-x^2y^2-2x^3y^2+x^2y^2+1\)
\(=1\)
Vậy giá trị của biểu thức trên ko phụ thuộc vào biến nên giá trị của biểu thức luôn bằng 1
Rút gọn biểu thức rồi tính 2xy (1/4x^2-3y)+5(xy- x^3+l) tai x = 1; y =1/2
\(2xy\left(\dfrac{1}{4}x^2-3y\right)+5\left(xy-x^3+1\right)\)
\(=\dfrac{1}{2}x^3y-6xy^2+5xy-5x^3+5\)
Thay x=1;y=\(\dfrac{1}{2}\) vào biểu thức, ta có:
\(\dfrac{1}{2}.1.\dfrac{1}{2}-6.1.\dfrac{1}{4}+5.1.\dfrac{1}{2}-5.1+5\)
\(=\dfrac{1}{4}-\dfrac{3}{2}+\dfrac{5}{2}-5+5\)
\(=\dfrac{-5}{4}+\dfrac{5}{2}\)
\(=\dfrac{5}{4}\)
Rút gọn biểu thức:
(x-2y).(x2+2xy+4y2)-(x+y)(x2-xy-y2)
Ta có:(x-2y).(x2+2xy+4y2)-(x+y).(x2-xy-y2)
=x3-2x2y+2x2y+4xy2-8y3-x3-x2y+x2y+xy2+xy2 =6xy2-7y3.