b) \(A+B=x^2+y^2+2x+3+2x^2+y^2+2x+1=3x^2+2y^2+4x+4\)
\(A-B=x^2+y^2+2x+3-2x^2-y^2-2x-1=-x^2+2\)
a) Ta có: \(A=x^2+y^2-2xy+2x+2xy+3\)
\(=x^2+y^2+2x-\left(2xy-2xy\right)+3\)
\(=x^2+y^2+2x+3\)
Ta có: \(B=2x^2+y^2-xy+2x+xy+1\)
\(=2x^2+y^2+2x+\left(xy-xy\right)+1\)
\(=2x^2+y^2+2x+1\)