Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2017 lúc 13:57

a, Chứng minh được  B K A ^ = 90 0

b, Gọi O là trung điểm AI

Ta có:

+ OK = OA =>  O K A ^ = O A K ^

+  O A K ^ = H B K ^ (cùng phụ  A C B ^ )

+ HB = HK =>  H B K ^ = H K B ^

=> O K A ^ = H K B ^ ⇒ H K O ^ = 90 0

Miền Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 21:06

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

Tâm là trung điểm của BC

Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)

pink hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 22:00

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

c: Xét ΔAFH vuông tại F và ΔCFB vuông tại F có

\(\widehat{FAH}=\widehat{FCB}\)

Do đó: ΔAFH\(\sim\)ΔCFB

Suy ra: AF/CF=AH/CB

hay \(AF\cdot CB=AH\cdot CF\)

Nguyễn Thế Long
Xem chi tiết
Quỳnh Như
Xem chi tiết
phong họ nguyễn
Xem chi tiết
tíntiếnngân
10 tháng 11 2019 lúc 12:49

- có \(\Delta BDC\)vuông tại D

nên D thuộc đường tròn đường kính BC ( 1)

có \(\Delta BEC\)vuông tại E

nên E thuộc đường tròn đường kính BC (2)

từ (1) và (2) suy ra đpcm

- gọi O là trung điểm của BC

có AO vuông góc với BC

dễ thấy OE > OH

nên H nằm trong đường tròn đường kính BC

dễ cm OA > OB

ên A nằm ngoài đường tròn đường kính BC

Khách vãng lai đã xóa
Phương Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 3 2023 lúc 23:38

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

O là trung điểm của AH

b:

XetΔACB có

BD,CE là đường cao

BD căt CE tại H

=>H là trực tâm

=>AH vuông góc BC

=>K là trung điểm của CB

góc ODK=góc ODH+góc KDH

=góc BHK+góc KBH=90 độ

=>KD là tiếp tuyến của (O)

MiiJinn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 19:27

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc 1 đường tròn

b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên B,E,D,C cùng thuộc đường tròn đường kính BC

tâm là trung điểm I của BC

bán kính là BC/2

c: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1),(2) suy ra A,H,I thẳng hàng

ΔABC đều

mà BD,CE là các đường cao

nên BD,CE là các đường trung tuyến

=>D,E lần lượt là trung điểm của AC,AB

Xét ΔABC có

BD,CE là các đường trung tuyến

BD cắt CE tại H

Do đó; H là trọng tâm của ΔABC

mà I là trung điểm của BC

nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)

ΔAIB vuông tại I

=>\(AB^2=AI^2+IB^2\)

=>\(AI^2=2^2-1^2=3\)

=>\(AI=\sqrt{3}\left(cm\right)\)

\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)

=>H nằm trong (I)

\(IA=\sqrt{3}>1=IB=R\)

=>A nằm ngoài (I)

 

le thi ngoc han
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2022 lúc 14:45

a: Ta có: ΔBKC vuông tại K

mà KH là trung tuyến

nên KH=BH

=>ΔHBK cân tại H

b: góc BAH=90 độ-góc ABC

góc IAK=90 độ-góc ACB

mà góc ABC=góc ACB

nên góc BAH=góc IAK

c: Gọi G là trung điểm của AI

góc GKH=góc GKI+góc HKI

=góc GIK+góc HBI

=góc BIH+góc HBI=90 độ

=>HK là tiếp tuyến của (G)