cho pt : (m+2)x\(^2\) _ (2m-1)x -3+m=0
xác định m để pt có nghiệm này bằng nửa nghiệm kia
Bt:a, xác định m để pt ẩn x sau có 2 nghiệm dương phân biệt: x^2-(m+3)x+3m=0
b, xác định m để pt ẩn x sau có nghiệm này bằng 3 nghiệm kia: x^2-(2m+1)x+m^2+m-6=0
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)
Chp pt: \(x^2-\left(2m+3\right)m^2+3m+2=0\)
1)CM pt luôn có 2 nghiệm phân biệt
2)Tìm m để pt có 1 nghiệm bằng 2.Tìm nghiệm còn lại
3)Xác định m để pt có 2 nghiệm thỏa mãn: \(-3< x_1< x_2< 6\)
4)Xác định m để pt có 1 nghiệm bằng bình phương nghiệm kia
cho pt x^2 - (2m+3)x + m^2 + 3m +2 =0 định m để pt có nghiệm này = ba nghiệm kia
`(2m-5)x^2 -2(m-1)x+3=0`
a. Tìm m để pt có 1 nghiệm bằng 2 (cái này không cần làm ạ), tìm nghiệm còn lại
b. tìm m để pt có 2 nghiệm sao cho \(x_1-x_2=3\); nghiệm này bằng bình phương nghiệm kia
b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
Câu b của em là 2 ý phân biệt đúng không?
1)cho pt x2+8x+m+5=0
a) voi giá trị nào của m thì pt này gấp 3 lần nghiệm kia? tính các nghiệm trong trường hợp này
2)cho pt x2-2(m-1)x+m-3=0
tìm hệ thức hệ giữa hai ngiệm ko phụ thuoovj vào m
xác định m để phương trình có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau.
3)cho pt (m-1)x2-2(m-1)x+m-2=0
xác định m để pt có 2 nghiệm thỏa mãn 3(x1+x2)=5x1x2.
cho pt x² - 2(2m-1)x+4m²=0 a) xác định m để pt có 2 nghiệm phân biệt b) xác định m để pt vô nghiệm c) giải pt với m=2 Mọi người giúp em với ạ.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
Cho phương trình (m + 2)x2 + (1-2m)x +m - 3 = 0
a) CM: PT có nghiệm với mọi m.
b) Tìm m để PT có 2 nghiệm phân biệt và nghiệm này gấp 3 lần nghiệm kia.
Cho pt : x\(^2\) - x -2m - 10 =0 (1)
a) Xác định m để pt (1) có nghiệm. Gọi các nghiệm của pt (1) là x\(_1\),x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_1\) - x\(_2\) = 8
b) Xác định m để ( x\(_1\) - x\(_2\) )\(^2\) + x\(_1\) - 2x\(_2\) = 32
a) Ta có: \(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-2m-10\right)\)
\(=1+4\left(2m+10\right)\)
\(=8m+41\)
Để phương trình (1) có nghiệm thì \(8m+41\ge0\)
hay \(m\ge-\dfrac{41}{8}\)
Bài 1: cho pt (m+1)x2 - 2(2m-1)x +m-2=0
a) xác định m để pt có 1 nghiệm bằng 2. Tính nghiệm kia
b) tổng bình phương các nghiệm bằng 2
Bài 2: cho pt x2 - 2(2m+1)x+ 3+4m=0
a) tìm m để pt có 2 nghiệm x1,x2
b)tìm hệ thức giữa x1, x2 độc lập với m
c) tính theo m, biểu thức A=(x1)3+ (x2)3
d) tìm m để pt có 1 nghiệm gấp 3 lần nghiệm kia
e) Lập pt bậc hai có các nghiệm là (x1)2,(x2)2
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)