Giải lại
điều kiện có 2 nghiệm\(\left(1\right)\left\{{}\begin{matrix}a\ne0\Rightarrow m+2\ne0\Rightarrow m\ne-2\\\Delta>0\Rightarrow\left(2m-1\right)^2-4\left(m+2\right)\left(m-3\right)=25\end{matrix}\right.\)
(2) có nghiệm thỏa mãn x1/x2 =1/2 hoặc x1/x2 =2
Phương trình có nghiệm x=1 với mọi m khác -2
\(\left[{}\begin{matrix}\dfrac{m-3}{m+2}=\dfrac{1}{2}\Rightarrow2m-3=m+2\Rightarrow m=8\\\dfrac{m-3}{m+2}=2\Rightarrow m-3=2m+4\Rightarrow m=-7\end{matrix}\right.\)
Kết luân
m= 8 hoặc m =-7
Lời giải
(1)Điều kiện có 2 nghiệm\(\left\{{}\begin{matrix}a\ne0\Rightarrow m+2\ne0\\\Delta>0\Rightarrow\left(2m-1\right)^2-4\left(m+2\right)\left(m-3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\\left(4m^2-4m+1\right)-4m^2+4m+24=25\end{matrix}\right.\) (1) \(\Leftrightarrow m\ne-2\)
(2) \(\left[{}\begin{matrix}\dfrac{x_1}{x_2}=\dfrac{1}{2}\\\dfrac{x_1}{x_2}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2m-1-5}{2\left(m+2\right)}=\dfrac{m-3}{n+2}\\x_2=\dfrac{2m-1+5}{2\left(m+2\right)}=\dfrac{m+2}{2\left(m+2\right)}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-3}{m+2}=\dfrac{1}{2}\\\dfrac{m-3}{m+2}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m-3.2=m+2\\m-3=m+2\end{matrix}\right.\) \(\Rightarrow m=8\)
Kết luận : m=8