Với x thuộc R. Chứng minh rằng : 2x4 +1 ≥ 2x3 + x2
giúp mình với
Với x R. Chứng minh rằng: 2x4 + 1 >= 2x3 + x2
một đề bài lố bịch, một câu tl ngớ ngẩn, thế này mà olm có câu:
không có học trò dốt
mà chỉ có thầy chưa giỏi
em xin đổi lại là:
95% hs k biêt hoc toán
95% thầy cô trẻ dạy toán, rất giỏi toán
( vì điểm thi đh ở đhsp ngành toán lấy rất cao,em chỉ nói lên sự thật mong olm đừng trừ điểm)
Đề bài chính xác là CMR : 2x4 + 1 > 2x3 + 2x2 với mọi x thuộc R
\(\Leftrightarrow2x^4-2x^3-x^2+1\ge0\)
\(\Leftrightarrow2x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-x-1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x+x^3-1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x^2-1\right)+\left(x-1\right)\left(x^2+x+1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x\left(x+1\right)+x+1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Có \(\left(x-1\right)^2\ge0\forall x\in R\)
\(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2\ge0\)
(đpcm)
Chứng minh rằng đa thức x4 + 2x3 - x2 - 2x chia hết cho 24 với mọi x thuộc Z
giúp mk nhanh vs ạ
\(=x^3\left(x+2\right)-x\left(x+2\right)\)
\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)
Vì đây là tích của bốn số nguyên liên tiếp
nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)
Bài 1: Rút gọn biểu thức sau:
a. 3x2(2x3- x+5) - 6x5-3x3+10x2
b. -2x(x3-3x2-xx+11)-2x4+3x3+2x2-22x2x
Bài 2: Chứng minh biểu thức sau không phụ thuộc vào x:
a. x(2x+1)-x2(x+2)+(x2-x+3)
b. 4(x-6)-x2(2+3x)+x(5x-4)+3x2(x-1)
Bài 3: Cho đa thức: f(x)=3x2-x+1
g(x)=x-1
a. Tính f(x).g(x)
b. Tìm x để f(x).g(x)+x2[1-3g(x)]=
Bài 4: Tìm x:
a. \(\dfrac{1}{4}\)x2-(\(\dfrac{1}{2}\)x-4)\(\dfrac{1}{2}\)x=-14
b. 2x(x-4)+3(x-4)+x(x-2)-5(x-2)=3x
(x-4)-5(x-4)
Các bạn giúp mik giải bt nha. Cảm ơn mn nhiêu ạ.
`@` `\text {Ans}`
`\downarrow`
Gửi c!
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
4:
a: =>1/4x^2-1/4x^2+2x=-14
=>2x=-14
=>x=-7
b: =>2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20
=>3x^2-12x-2=3x^2-17x+20
=>5x=22
=>x=22/5
P(x)=2x4-x-2x3+1
Q(x)=-2x4+x2+5
Tính P(x)+Q(x) bằng 2 cách
Giúp mik với ạ!
2 cách thì cách 1 là tính theo cột dọc ( đặt tính ak ) , cách 2 là tính như bth ( cậu tự làm nha )
đáp án : -2x^3 + x^2 -x + 6
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
Hãy sắp xếp các hạng tử của mỗi đa thức sau theo lũy thừa giảm dần của biến:
Q(x) = 4x3 – 2x + 5x2 - 2x3 + 1 - 2x3
R(x) = -x2 + 2x4 + 2x - 3x4 – 10 + x4
Trước hết, ta rút gọn các đa thức:
- Q(x) = 4x3 – 2x + 5x2 - 2x3 + 1 - 2x3
Q(x) = (4x3- 2x3- 2x3) – 2x + 5x2 + 1
Q(x) = 0 – 2x + 5x2 + 1
Q(x) = – 2x + 5x2 + 1
- R(x) = - x2 + 2x4 + 2x - 3x4 – 10 + x4
R(x) = - x2 + (2x4- 3x4+ x4) + 2x – 10
R(x) = - x2 + 0 + 2x – 10
R(x) = - x2 + 2x – 10
Sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm dần của biến ta có:
Q(x) = 5x2 – 2x + 1
R(x) = - x2 + 2x – 10
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
cho hàm số y=f(x)=2018 m.x chứng minh x thuộc r thì f(x1)-f(x2)=f(x1-x2) và f(kx) = kf (x) với k khác 0
giúp mình với
Lời giải:
$f(x_1)-f(x_2)=2018mx_1-2018mx_2=2018m(x_1-x_2)$
$=f(x_1-x_2)$ (đpcm)
$f(kx)=2018m(kx)=k.2018mx=kf(x)$ (đpcm)
cho hàm số f(x) có tính chất f(x1 + x2) = f(x1) + f(x2) với mọi x1 + x2 thuộc R chứng minh rằng hàm số f(x) có các tính chất sau : a, f(0) =0 b, f(-x) =-f(x) với mọi x thuộc R c, f(x1-x2) = f(x1) - f(x2) với mọi x1 , x2 thuộc R giúp mk nhaaaaaaa
Bài 5: Cho hàm số y=f(x)≠0y=f(x)≠0 (∀x∈R;x≠0∀x∈R;x≠0) có tính chất f(x1,x2)=f(x1).f(x2)f(x1,x2)=f(x1).f(x2) . Hãy chứng minh rằng:
a) f(1)=1f(1)=1 b) f(x−1)=[f(x)]−1
giúp mình phần b với!