Những câu hỏi liên quan
ank viet
Xem chi tiết
Lightning Farron
26 tháng 12 2016 lúc 17:42

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)

\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
Vinh Nguyễn Thành
Xem chi tiết
Nguyễn Thành Trương
29 tháng 4 2019 lúc 15:20

Hỏi đáp Toán

Bình luận (2)
Lê Thanh Kiệt
Xem chi tiết
Nguyễn Quỳnh Chi
3 tháng 8 2016 lúc 10:06

Ta có:

\(\frac{1}{x+y}\) \(\le\)\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\))

=> \(\frac{1}{x+y}\)\(\le\)\(\frac{x+y}{4xy}\)

=> 4xy \(\le\)(x+y)2

=> 2xy \(\le\)x2+y2

x^2 +y ^2-2xy luôn lớn hơn hoặc bằng 0 nhé! Vội quá, không giải nữa nha!

Bình luận (0)
Thị Thu Thúy Lê
Xem chi tiết
alibaba nguyễn
11 tháng 5 2017 lúc 13:59

Cách khác: 

\(\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)}{4}\ge2xy+\frac{x+y}{4}\)

\(=\frac{4xy+x+4xy+y}{4}=\frac{x\left(4y+1\right)+y\left(4x+1\right)}{4}\)

\(\ge\frac{4x\sqrt{y}+4y\sqrt{x}}{4}=x\sqrt{y}+y\sqrt{x}\)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

Bình luận (0)
Lầy Văn Lội
11 tháng 5 2017 lúc 11:48

\(\frac{1}{2}\left(x+y\right)\left(x+y+\frac{1}{2}\right)=\frac{1}{2}\left(x+y\right)\left(x+\frac{1}{4}+y+\frac{1}{4}\right)\)

Áp dụng bất đẳng thức cauchy:

\(x+y\ge2\sqrt{xy}\)

\(x+\frac{1}{4}\ge2\sqrt{\frac{x}{4}}=\sqrt{x}\)

\(y+\frac{1}{4}\ge2\sqrt{\frac{y}{4}}=\sqrt{y}\)

do đó \(VT\ge\frac{1}{2}.2.\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=x\sqrt{y}+y\sqrt{x}\)(đpcm)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

Bình luận (0)
Momozono Nanami
Xem chi tiết
tth_new
3 tháng 6 2019 lúc 18:39

Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi

Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)

\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)

\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z

Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))

Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)

Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)

\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)

Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)

\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)

BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

Chứng minh hoàn tất

Bình luận (0)
tth_new
3 tháng 6 2019 lúc 18:44

Em sửa chút cho bài làm ngắn gọn hơn.

Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)

BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)

Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!

Bình luận (0)
Trần Phúc Khang
4 tháng 6 2019 lúc 10:48

Áp dụng BĐT cosi ta có

\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+z}{8}+\frac{1+y}{8}\ge\frac{3}{4}x\)

\(\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{1+x}{8}+\frac{1+z}{8}\ge\frac{3}{4}y\)

\(\frac{z^3}{\left(1+y\right)\left(1+x\right)}+\frac{1+y}{8}+\frac{1+x}{8}\ge\frac{3}{4}z\)

Khi đó 

\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{1}{4}\left(x+y+z\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)

Mà \(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> \(VT\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)(ĐPCM)

Dấu bằng xảy ra khi x=y=z=1

Bình luận (0)
Lil Shroud
Xem chi tiết
Minhmetmoi
3 tháng 2 2022 lúc 15:26

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

Bình luận (0)
Ngô Duy Phúc
Xem chi tiết
Trần Hữu Ngọc Minh
14 tháng 12 2017 lúc 18:40

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

Bình luận (0)
vũ tiền châu
Xem chi tiết
khánhchitt3003
20 tháng 11 2017 lúc 15:04

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)

Bình luận (0)
Anh Hùng Đổ Lệ
Xem chi tiết