Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Gia Hân
Xem chi tiết
Lê Thị Hồng Vân
8 tháng 7 2018 lúc 21:32

Ta có ;

\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{\left(a1\right)^{2017}}{\left(a2\right)^{2017}}\\ =\dfrac{a1\cdot a2\cdot a3\cdot...\cdot a2017}{a2\cdot a3\cdot a4\cdot...\cdot a2018}=\dfrac{a1}{a2018}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}\left(2\right)\)

Từ (1) và (2) ⇒ Đpcm

Nguyễn Thị Ngọc Diệp
Xem chi tiết
Hoàng Ninh
8 tháng 7 2018 lúc 13:09

Có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.........=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+.........+a_{2017}}{a_2+a_3+........+a_{2018}}\)

Mà \(\frac{a_1}{a_2}=\frac{a_1+a_2+............+a_{2017}}{a_2+a_3+.............+a_{2018}}\)

\(\frac{a_2}{a_3}=\frac{a_1+a_2+..........+a_{2017}}{a_2+a_3+...........+a_{2018}}\)

.........

\(\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...........+a_{2017}}{a_2+a_3+.............+a_{2018}}\)

\(\Leftrightarrow\frac{a_1}{a_{2018}}=\left(\frac{a_1+a_2+...........+a_{2017}}{a_2+a_3+.............+a_{2018}}\right)\)

Vậy ......

Hoàng Ninh
8 tháng 7 2018 lúc 13:21

Hình như bị sai đề rồi bạn Nguyễn Thị Ngọc Diệp

Chỗ sai:

\(\frac{a_1}{a_{2018}}=\left(\frac{a_1+a_2+..........+a_{2017}}{a_2+a_3+...........+a_{2018}}\right)\)

Bạn sửa lại đề đi rồi mình làm lại cho

Nguyễn Hưng Phát
8 tháng 7 2018 lúc 13:25

hê,hình như you cũng học trường Hoàng Xuân Hãn à :v,thầy Ngữ ra đề à =)

ミ꧁༺༒༻꧂彡
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Cuộc Sống
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Akai Haruma
29 tháng 12 2017 lúc 12:30

Lời giải:

Sử dụng kết quả sau: Với \(n\in\mathbb{N}\Rightarrow n^5-n\vdots 30\)

Chứng minh:

Ta có: \(n^5-n=n(n^4-1)=n(n-1)(n+1)(n^2+1)\)

Xét thấy \(n-1,n\) là hai số nguyên liên tiếp nên \(n(n-1)\vdots 2\)

\(\Rightarrow n^5-n\vdots 2(1)\)

Xét thấy \(n-1,n,n+1\) là ba số nguyên liên tiếp nên

\(n(n-1)(n+1)\vdots 3\)

\(\Rightarrow n^5-n\vdots 3(2)\)

Xét modulo của 5 cho $n$ :

+) \(n=5k\Rightarrow n^5-n=(5k)^2-(5k)\vdots 5\)

+) \(n=5k+1\Rightarrow n-1=5k\vdots 5\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+2\Rightarrow n^2+1=(5k+2)^2+1=5(5k^2+4k+1)\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+3\Rightarrow n^2+1=(5k+3)^2+1=5(5k^2+6k+2)\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+4\Rightarrow n+1=5k+5\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

Tóm lại trong mọi TH thì \(n^5-n\vdots 5(3)\)

Từ (1);(2);(3) và (2,3,5) là 3 số đôi một nguyên tố cùng nhau nên:

\(n^5-n\vdots (2.3.5=30)\)

--------------------------------

Quay trở tại bài toán. Áp dụng kết quả trên:

\(M-N=(a_1^5-a_1)+(a_2^5-a_2)+...+(a_{2017}^5-a_{2017})\vdots 30\)

Mà \(N\vdots 30\Rightarrow M\vdots 30\)

Vậy ta có đpcm.

Lê Minh Tuấn
Xem chi tiết
Đỗ Hoàng Quân
30 tháng 10 2017 lúc 18:21

ko biết làm

Monkey D .Luffy
Xem chi tiết
 Mashiro Shiina
13 tháng 11 2017 lúc 17:12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\)

Đặt:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+....+a_{2018}}=k\)

\(\circledast\)\(\left(\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\right)^{2017}=k^{2017}\)

\(\circledast\) \(\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}....\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1}{a_{2018}}=k^{2017}\)

Ta có đpcm

Thư Nguyễn Nguyễn
Xem chi tiết
Trần Nguyễn Bảo Quyên
15 tháng 1 2017 lúc 8:18

Ta có :

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) \(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow S=5\)

Vậy : \(S=5\)