Tìm x:
a) 2+4+6+...+2x= 210
b) 1+3+5+...+ (2x-1) = 225
tìm x:
a)3(2x-3)+2(2-x)=-3
b)2x(x2-2)+x2(1-2x)-x2=-12
c)3x(2x+3)-(2x+5)(3x-2)=8
d)4x(x - 1) - 3(x2-5)-x2=(x-3)-(x+4)
e)2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Tìm x:
a) 4.(2-x)+x.(x+6)=x2
b) x.(x-7)-(x-2).(x+5)=0
c) (2x+3).(3-2x)+(2x-1)2=2
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
Tìm x:
a) (2x - 3)(6 - 2x) = 0
b) \(5\dfrac{4}{7}:x=13\)
c) 2x - \(\dfrac{3}{7}\) = \(6\dfrac{2}{7}\)
d) \(\dfrac{x}{5}\) + \(\dfrac{1}{2}\) = \(\dfrac{6}{10}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)
f) \(\dfrac{x-12}{4}=\dfrac{1}{2}\)
g) \(2\dfrac{1}{4}\).\(\left(x-7\dfrac{1}{3}\right)=1,5\)
h) \(\left(4,5-2x\right).1\dfrac{4}{7}=\dfrac{11}{14}\)
i) \(\dfrac{2}{3}\left(x-25\%\right)=\dfrac{1}{6}\)
k) \(\dfrac{3}{2}x-1\dfrac{1}{2}=x-\dfrac{3}{4}\)
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
f)\(\dfrac{x-12}{4}=\dfrac{1}{2}=\dfrac{x-12}{4}=\dfrac{2}{4}\)
⇒\(x-12=2\)
\(x=2+12\)
x = 14
g)2\(\dfrac{1}{4}.\left(x-7\dfrac{1}{3}\right)=1,5\)
\(\dfrac{9}{4}.\left(x-\dfrac{22}{3}\right)=1,5\)
\(\left(x-\dfrac{22}{3}\right)=\dfrac{3}{2}:\dfrac{9}{4}\)
\(x-\dfrac{22}{3}=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}+\dfrac{22}{3}\)
\(x=8\)
tìm x:
a, (2x-5)^3=216
b, 2x-3 chia hết cho x+4( với x thuộc z)
c,|x-18|-2x+14=47
d,1 phần 6+ 5 phần 6:x = 7 phần12
a) Ta có: \(\left(2x-5\right)^3=216\)
\(\Leftrightarrow2x-5=6\)
\(\Leftrightarrow2x=11\)
hay \(x=\dfrac{11}{2}\)
b) Ta có: \(2x-3⋮x+4\)
\(\Leftrightarrow-11⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-3;-5;7;-15\right\}\)
Alo, sugeni two wai phem. Si ga no, you woo be the me that nas te, ai gi da
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
Tìm x:
a) (2x-3)2+6(2x-1)=7
b) x2-7x+10=0
c) -6x2+13x-5=0
d) x4+7x2-18=0
a: Ta có: \(\left(2x-3\right)^2+6\left(2x-1\right)=7\)
\(\Leftrightarrow\left(2x-3\right)^2+6\left(2x-1\right)-7=0\)
\(\Leftrightarrow4x^2-12x+9+12x-6-7=0\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
b: Ta có: \(x^2-7x+10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Tìm x:
a) (2x-3)2+6(2x-1)=7
b) x2-7x+10=0
c) -6x2+13x-5=0
d) x4+7x2-18=0
a) \(\left(2x-3\right)^2+6\left(2x-1\right)=7\\ \Rightarrow4x^2-12x+9+12x-6-7=0\\ \Rightarrow4x^2-4=0\\ \Rightarrow x^2-1=0\\ \Rightarrow x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
b) \(x^2-7x+10=0\\ \Rightarrow\left(x^2-2x\right)-\left(5x-10\right)=0\\ \Rightarrow\left(x-2\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
c) \(-6x^2+13x-5=0\\ \Rightarrow-\left(6x^2-13x+5\right)=0\\ \Rightarrow-\left[\left(6x^2-10x\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left[2x\left(3x-5\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left(2x-1\right)\left(3x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\left(2x-1\right)=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)
d) \(x^4+7x^2-18=0\\ \Rightarrow\left(x^4-4\right)+\left(7x^2-14\right)=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+2\right)+7\left(x^2-2\right)=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x^2=-9\left(loại\right)\end{matrix}\right.\)
Tìm x:
a) (2x - 1) (x^2 - x + 1) = 2x^3 - 3x^2 + 2
b) (x + 1) (x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
c) (x + 1) (x + 2) (x + 5) - x^3 - 8x^2 = 27
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
Tìm x:
a)(x+2)^2-2(x+2)(x-5)=0
b)2x^2+3x-5=0
c)x+2√2x^2+2x^3=0
d)(3x-1)^2-4(x+5)^2=0
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)