giải hệ \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6x^2-y-xy^2=0\\5x^2-x^2y^2-1=0\end{matrix}\right.\)
Tham khảo nha:
https://hoc247.net/hoi-dap/toan-9/giai-he-phuong-trinh-y-xy-2-6x-2-1-x2y-2-5x-2-faq361806.html
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-xy+y^2=\dfrac{29}{3}\\27\left(x^3+y^3\right)=1072\end{matrix}\right.\)
giải hệ pt \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y=5x^2\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Giair hệ PT: \(\left\{{}\begin{matrix}y+xy^2=6x^2\left(1\right)\\1+x^2y^2=5x^2\left(2\right)\end{matrix}\right.\)
Xét hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\left(1\right)\\1+x^2y^2=5x^2\left(2\right)\end{matrix}\right.\)
Từ (2) => x # 0
Chia 2 vế của mỗi PT cho x2 ta được \(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=6\\\dfrac{1}{x^2}+y^2=5\end{matrix}\right.\)
Đặt \(a=\dfrac{1}{x}\) ta có \(\left\{{}\begin{matrix}a^2y+ay^2=6\\a^2+y^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay\left(a+y\right)=6\\\left(a+y\right)^2-2ay=5\end{matrix}\right.\)
Đặt t = a + y, z =ay (t2 \(\ge\) 4z)
Ta có: \(\left\{{}\begin{matrix}tz=6\\t^2-2z=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{t^2-5}{2}\\t^3-5t-12=0\left(3\right)\end{matrix}\right.\)
(3) <=> (t - 3)(t2 + 3t + 4) = 0 <=> t = 3 => z = 2
Vậy \(\left\{{}\begin{matrix}a+y=3\\a.y=2\end{matrix}\right.\)
\(\Leftrightarrow\left(a=1;y=2\right)\) hoặc \(\left(a=2;y=1\right)\)
Hệ thức có hai nghiệm (x = 1; y = 2), (x = \(\dfrac{1}{2}\) ; x = 1)
Giải hệ pt sau = phương pháp thế:
a, \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\cdot\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=1+2=3\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=2-2y\\2\cdot3x-3y=18\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=2-2y\\2\left(2-2y\right)-3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-7y=18\\3x=2-2y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7y=-14\\3x=2-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=2-2\cdot\left(-2\right)=6\end{matrix}\right.\)
=>x=2 và y=-2
giải hệ phương trình sau:
\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.^{ }\)
Câu hỏi của Thuý Lady - Toán lớp 9 - Học toán với OnlineMath