Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khách vãng lai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 9 2017 lúc 10:58

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có: ∠(ABN ) = 90 0 (B thuộc đường tròn đường kính AN)

⇒ BN // MO ( cùng vuông góc với AB)

Do đó:

∠(AOM) = ∠(ANB) (đồng vị))

∠(AOM) = ∠(BOM) (OM là phân giác ∠(AOB))

⇒ ∠(ANB) = ∠(BOM)

Xét ΔBHN và ΔMBO có:

∠(BHN) = ∠(MBO ) = 90 0

∠(ANB) = ∠(BOM)

⇒ ΔBHN ∼ ΔMBO (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Hay MB. BN = BH. MO

Higashi Mika
Xem chi tiết
Giải Giúp Ạ
Xem chi tiết
Tran Kim Phuong
9 tháng 6 2021 lúc 16:55

ai giup a

tuyết tống
Xem chi tiết
trần thị hương giang
18 tháng 12 2016 lúc 14:04

tớ ko biết

ekhoavvdd
Xem chi tiết
Trần Minh Hoàng
14 tháng 3 2021 lúc 7:45

1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.

2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)

3: Phần thuận: Dễ thấy H thuộc KI.

Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.

Do đó AH = AO = R.

Suy ra H thuộc (A; R) cố định.

Phần đảo cm tương tự.

Vậy...

Quyết Thân Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 20:29

a: Xét tứ giác KAOM có 

\(\widehat{KAO}+\widehat{KMO}=180^0\)

Do đó: KAOM là tứ giác nội tiếp

b: Xét (O) có

KA là tiếp tuyến

KM là tiếp tuyến

Do đó: KA=KM

hay K nằm trên đường trung trực của AM(1)

Ta có: OA=OM

nên O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OK là đường trung trực của AM

hay OK\(\perp\)AM

Xét ΔOAK vuông tại A có AI là đường cao

nên \(OI\cdot OK=OA^2\)

Sizuka
Xem chi tiết
Đặng Minh Quang
18 tháng 2 2020 lúc 14:19

ngu vcl

Khách vãng lai đã xóa
Hoàng Đình Đại
18 tháng 2 2020 lúc 15:11

câu a) bạn sử dụng tính chất của 3 đường cao là được.

b) bạn chứng minh là tam giác ABK là tam giác vuông do chắn nửa đường tròn

sau đó xét hai tam giác vuông ACD và AKB sao cho đồng dạng : có \(\widehat{ACD}=\widehat{AKB}\)do cùng chắn cung AB

sau đó bạn suy ra tỷ số đồng dạng rồi nhân chéo là xong.

c)

bạn xét hai tam giác MAB vad MCK  sao cho đồng dạng  do

hai góc M bằng nhau do đối đỉnh 

 góc MKC= góc MBA cùng chắn cung AC

rồi suy ra  2 tam giác đó dồng dạng rồi suy ra tỉ số đồng dạng rồi nhân chéo 

d  câu này ta có \(\hept{\begin{cases}CF\perp AB\\KB\perp AB\end{cases}\Rightarrow CF//KB\Leftrightarrow CH//KB}\)

\(\hept{\begin{cases}BE\perp AC\\KC\perp AC\end{cases}\Rightarrow BE//CK\Leftrightarrow BH//CK}\)

TỪ 2 ĐIỀU TRÊN ta suy ra được tứ giác CHBK LÀ HÌNH BÌNH HÀNH 

TỪ ĐIỀU ĐÓ SUY RA  I là giao diểm của hai đường chéo suy ra i là trung điểm của HK suy ra H,I,K thằng hàng

Khách vãng lai đã xóa
an lê
Xem chi tiết
Huỳnh Quang Sang
27 tháng 11 2018 lúc 9:50

Bạn tự vẽ hình nhé

a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC

b\()\)Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH

c,Gọi G là giao của BD và AC

\(\Delta DCG\)có OA \(//DG\)\((\)cùng \(\perp BC\)\()\); OD=OC
=> A là trung điểm của GC
Có BH//AC, theo hệ quả của định lý Thales:

\(\frac{BI}{AG}=\frac{ID}{IA}=\frac{IH}{AC}\)

=> IH=IB(đpcm)

Chúc bạn học tốt